Category: Missions (page 2 of 12)

More On The Very Hot Science of Stellar Flares and Their Implications For Habitability

A solar flare, imaged by NASA’s Solar Dynamics Observatory.

Among the many scientific fields born, or reborn, by the rise of astrobiology and its search for life beyond Earth is the study of stars, including our own Sun.  Now that we know that planets — from the large and gaseous to the small and rocky — are common in our galaxy and number in the many, many billions, there is suddenly vast amount of real estate where life potentially could arise.

We already know that many of those planets large and small are not candidates for habitability for any number of reasons, and that makes the understanding of what general conditions are required for life all the more pressing.

And as the astrobiological effort speeds ahead, it has become clear that the make-up, behavior and location of the stars that host exoplanets is central to that understanding.

Many stellar issues are suddenly important, and perhaps none more so than the nature, frequency and consequences of the constant stellar eruption of  flares, superflares and coronal mass ejections.

Created as intense bursts of radiation coming from the release of magnetic energy following reconnections in stars’ coronas, flares and related coronal mass ejections are the largest explosive events in solar systems. The energy released by a major flare from our Sun is about a sixth of the total solar energy released each second and equal to 160,000,000,000 megatons of TNT

The current focus of study is flares coming off red dwarf stars — much smaller and less energetic than our Sun, but the most common stars in the galaxy, by a lot.  Many are already known to have multiple rocky planets within a distance from the star termed the “habitable zone,” where in theory water could sometimes be liquid.

But red dwarf stars universally experience intense flaring in their early periods, and the planets orbiting in the those red dwarf habitable zones can be 20 times closer to their stars than we are to the Sun.

The crucial question is whether those flares forever sterilize the planets in their systems, which is certainly a possibility.  But a related question is whether the flares might also deliver amounts of ultraviolet radiation that may be essential to the formation of the chemical building blocks of life.

Not surprisingly, this is a subject of not only intense study but of heated debate as well.

Violent stellar flares from young red dwarf stars, as illustrated here, could potentially evaporate the atmosphere of a planet.

Read more

“Tantalizing” Carbon Signals From Mars

This mosaic was made from images taken by the Mast Camera aboard NASA’s Curiosity rover on the 2,729th Martian day, or sol, of the mission. It shows the landscape of the Stimson sandstone formation in Gale crater. In this general location, Curiosity drilled the Edinburgh hole, a sample from which was enriched in carbon-12. (NASA/JPL-Caltech/MSSS.)

The rugged and parched expanses of Western Australia are where many of the oldest signs of ancient life on Earth have been found, embedded in the sedimentary rocks that have been undisturbed there for eons.  One particularly significant finding from the Tumbiana Formation contained a substantial and telltale excess of the carbon-12 isotope compared with carbon-13.

Since carbon 12 is used by living organisms, that carbon-12 excess in the rocks was interpreted to mean that some life-form had been present long ago (about 2.7 billion years) and left behind that “signature”  of its presence. What was once a microbial mat that could have produced the carbon-12 excess was ultimately found nearby.

After nine years of exploring Gale Crater on Mars, scientists with NASA’s Curiosity rover have collected a substantial number of rock samples that they have similarly drilled, pulverized, gasified and analyzed.

And as explained in an article in the Proceedings of the National Academy of Science (PNAS,) researchers have found quite a few Martian specimen that have the same carbon-12 excesses as those found in Western Australia.

Paul Mahaffy of NASA’s Goddard Space Flight Center, long-time principal investigator for the instrument that found the carbon-12 excess on Mars, called the results “tantalizingly interesting.”

And the lead author of the PNAS paper, Christopher House of Penn State University, said that “On Earth, processes that would produce the carbon signal we’re detecting on Mars are biological.”  Like from Western Australia and elsewhere.

So something unusual and important has been discovered. But exactly what it is and how it came to be remains very much a work in progress.

Perhaps biology did play a role, the team writes.  If so, it would involve ancient bacteria in the Martian surface that would have produced a unique carbon signature when they released methane into the atmosphere. Ultraviolet light would have then converted that gas into larger, more complex molecules that would rain down and become part of Martian rocks.

Scientists with NASA and European Mars missions traveled to the Western Australian Outback to hone their research techniques before their missions launched.

Read more

A Huge Watery Reservoir May Lie Beneath the Surface of The “Grand Canyon” of Mars

The Valles Marineris in equatorial Mars and is one of the the largest canyon in the solar system.  It is surpassed in length only by the rift valleys of Earth. (NASA)

That early Mars was much wetter and warmer than it is today has been well established by numerous missions.  Water ice is visible at the poles and many fossil rivers have been found in the southern highlands of Mars.  The Curiosity rover found as well that the large crater where it landed — Gale Crater – once had a lake and in-flowing streams.

But the presence of water, or proof that water once flowed, has been missing in the equatorial latitudes  of the planet.

However, now a paper based on data from the European/Russian Trace Gas Orbiter (TGO) strongly suggests that the Candor Chasma, located near the heart of the massive canyon system called Valles Marineris, has either large deposits of a kind of permafrost water ice just below its surface or of rocks formed in water and now containing that H2O in their structure.

The article to appear in the journal Icarus says that the discovery of large amounts of hydrogen in the region speaks of this aqueous  past.

“We found a central part of Valles Marineris to be packed full of water – far more water than we expected,” Alexey Malakhov, of the Russian Space Research Institute and a co-author of the study, said in a statement.

“This is very much like Earth’s permafrost regions, where water ice permanently persists under dry soil because of the constant low temperatures.”

 

Valles Marineris, seen at an angle of 45 degrees to the surface in near-true color and with four times vertical exaggeration. The image covers an area of about 400,000 square miles. The largest portion of the canyon, which spans right across the image, is known as Melas Chasma. Candor Chasma is the connecting trough immediately to the north. The digital terrain model was created from 20 images taken by the High Resolution Stereo Camera of the Mars Express Orbiter. (ESA)

Valles Marineris is 10 times longer and 4 times deeper than our Grand Canyon.  Geologists have theorized that Valles Marineris began to open along geological faults about 3.5 billion years ago. The faulting may have been caused by the tectonic activity that accompanied the growth of the giant volcanoes in Tharsis, lying just to the west.Read more

What The James Webb Space Telescope Can Do For Exoplanet Science and What It Cannot Do

The James Webb Space Telescope, as rendered by an artist. The telescope is scheduled to launch later this month. (NASA)

When the James Webb Space Telescope finally launches (late this month, if the schedule holds) it will forever change astronomy.

Assuming that its complex, month-long deployment in space works as planned, it will become the most powerful and far-seeing observatory in the sky.  It will have unprecedented capabilities to probe the earliest days of the universe, shedding new light on the formation of the first stars and galaxies.  And it will observe in new detail the most distant regions of our solar system.

Deep space astrophysics is what JWST was first designed for in the early 1990s, and that will be its transformative strength.

But much is also being made of what JWST can do for the study of exoplanets and some are even talking about how it just might be able to find biosignatures — signs of distant life.

While it is probably wise to never say never regarding an observatory with the power and capabilities of JWST,  the reality is that it was not designed to look for the exoplanets most likely to be habitable.  Actually, when it was first proposed, the observatory had no exoplanet-studying capabilities at all because no exoplanets had yet been found.

What was added on is substantial and exoplanet scientists say JWST can help advance the field substantially.  But there are definite limits and finding biosignatures — life — is almost certainly a reach too far for JWST.

When starlight passes through a planet’s atmosphere, certain parts of the light are absorbed by the atmosphere’s elements. By studying which parts of light are absorbed, scientists can determine the composition of the planet’s atmosphere. (Christine Daniloff/MIT, Julien de Wit)

Astronomer Jacob Bean of the University of Chicago, who has played a leadership role in planning JWST exoplanet observations for the telescope’s early day, says that people need to know these limitations so the pioneering exoplanet science that will be possible with JWST is not seen as somehow disappointing.

As he explained, it is essential to understand that the kind of exoplanet observing that the JWST will mostly do is “transit spectroscopy.”  This involves staring at a star when an exoplanet is expected to transit in front of it.  When that happens, light from the star will pass through the atmosphere of the exoplanet (if there is one) and through spectroscopy scientists can determine what molecules are in that hoped-for atmosphere.… Read more

Touching the Sun

An illustration of NASA’s Parker Solar Probe flying past the sun. The spacecraft has a carbon-carbon heat shield (carbon fibers in a carbon matrix) that can protect it from temperatures of up to 2500 F, about the melting point of steel.  (NASA’s Goddard Space Flight Center)

The Parker Solar Probe is the stuff of superlatives and marvels.

Later this week, it will pass but 5.3 million miles from the sun — much closer than Mercury or any other spacecraft  have ever come — and it will be traveling at a top speed of 101 miles per second, the fastest human-made object ever created.

It’s designed to withstand temperatures of 2,500 degrees Fahrenheit and solar radiation 475 times the intensity at Earth orbit.

And as it reaches its perihelion, or closest pass of this orbit, it will be on only its 10th of 24 planned progressively closer solar passes.  In the years ahead, it will ultimately skim into the upper corona, the atmosphere of charged and unimaginably hot plasma that surrounds the sun and other stars.  The Parker Probe will, quite literally, touch the sun.

Something rather awe-inspiring to think about this coming Sunday, when the next pass takes place.

The mission, however, surely does not have record-setting as its goal.  Rather, those records are necessary to achieve the scientific goals — to fly close enough to the sun to understand how and where the gravity-defying force of the “solar wind” originates; to determine the structure and dynamics of the magnetic fields and switchbacks that are hotly debated as a possible source of that solar wind; and to resolve the mystery of why the sun’s corona is unexpectedly hotter than the solar “surface” below it.

“Parker Solar Probe is already telling us many important things about the sun that we didn’t know,” said Nour Raouafi, Parker Solar Probe project scientist at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland.  “We are definitely getting closer to understanding some of the big questions we had before, such as the source of the solar wind.  But we have to be mindful that in whatever we find, the Sun is always changing.”

And incidently, he said, more than 99.9 percent of all the matter in our solar system is in and around the sun.

 

Solar wind activity at different scales as imaged by the Parker Probe’s Wide-field Imager (WISPR) instrument earlier this year during.
Read more

Metal Mini-Asteroids Detected Passing Near Earth, Offering Potentially Great Science and Maybe Future Mining

An artist impression of a close flyby of the metal-rich Near-Earth asteroid 1986 DA. Astronomers using the NASA Infrared Telescope Facility have confirmed that the asteroid is made of 85% metal. (Addy Graham/University of Arizona)

Metal asteroids offer something rare in the solar system — the core of a planet without all the rock that normally surrounds it.

Since it is impossible to directly examine a planetary or lunar core if the parent body remains intact, metal-rich asteroids where the upper mantle and crust layers have been lost to a cataclysmic crash offer a potential path to, in effect, peek inside the depths (and deep time) of an object.

The asteroid Psyche is such an object, and that’s why NASA approved a mission to the asteroid that is scheduled to launch next year.  Orbiting the sun between Mars and Jupiter in the largest asteroid belt, Psyche appears to be the exposed nickel-iron core of an early planet, and as such reveals the early evolution of our solar system.

But Psyche is not the only metal-rich asteroid known to astronomers, and it certainly is not the closest.

Two much smaller “mini-Pysches” have been detected that are also comprised of iron, nickel, and other metals ranging from platinum to rare earth elements.  And these two mini-asteroids — 1986 DA and 2016 ED85 — were recently found to have their spectral signatures are quite similar to asteroid Psyche.

And unlike Psyche, which is between 180 million and 360 million miles away, these mini-Psyches orbit less than twenty million from Earth every 20 to 30 years.

“These kind of metal-rich Near-Earth asteroids are extremely rare,” said Vishnu Reddy of the University of Arizona, and co-author of a recent paper in Planetary Science Journal.  “There are some 27,000 known Near-Earth objects, and only these two are metal rich.  Of the 1.2 million asteroids that have been identified, only a little over a dozen are in that metal-rich category.”

Reddy  has been part of a group researching unusual near-Earth objects since 2005, and so these findings are most rewarding.

“In the years ahead we can study Psyche, a large metal-rich object that is quite far away,” Reddy said.  “And now we also know of two much smaller metal-rich objects that are also much, much closer to us.”

Artist’s conception of Psyche, with orbiter spacecraft.  The mission, led by Linda Elkins-Tanton at Arizona State University, is scheduled to launch next year. 

Read more

Frigid Europa Holds a Huge and Maybe Habitable Ocean Beneath Its Thick Ice Covering. How is That Possible?

Europa has one of the smoothest surface of any body in the solar system.  A moon as old as Europa that did not have an ice cover — and a likely ocean inside — would be pocked with asteroid craters.  On Europa, these craters appear to be absorbed into the icy surface via geologic and thermal processes.  Giant lakes trapped in Europa’s crust also bust up the icy surface. (NASA)

Jupiter’s moon Europa is almost five times as far away from the sun as Earth is, with surface temperatures that don’t rise above minus 260 degrees Fahrenheit.  It’s slightly smaller than our moon and orbits but 400,000 miles from the solar system’s largest planet, which it takes but 3.5 Earth days to orbit.  As a result it is tidally locked, always showing the same face to Jupiter.

When it comes to potentially habitable objects in our solar system, Europa would not seem to be a terribly likely possibility.

But, of course, it is.  And in three years NASA’s Europa Clipper mission will launch to explore what would appear to be one of the most unlikely yet possible places in our solar system to find potential signs of life.

The reason why is that scientists are almost certain that under Europa ‘s 10-to 15 mile ice covering is a deep, global ocean of salty water.

The size of the ocean has not been well determined yet, with estimates of between 40 and 100 miles of depth.  But a  consensus has been reached that the ocean is likely to be global, and contains two to three times as much liquid water as found on Earth.

This then raises a question with great significance for Europa, other moons in the solar system and quite likely planets and moons well beyond us:  How can there be so much liquid water inside such frigid places?

The spot toward the lower left is one Europa, against the backdrop of Jupiter.  Images from Voyager in 1979 bolster the modern hypothesis that Europa has an underground ocean and is therefore a good place to look for extraterrestrial life. The dark spot on the upper right is a shadow of another of Jupiter’s large moons. Sixteen frames from Voyager 1’s 1979 Jupiter flyby were recently reprocessed and merged to create this image.  (NASA, Voyager 1, JPL, Caltech; Processing & License: Alexis Tranchandon / Solaris)

There are numerous possible answers to that question, and it’s likely that all or most played some role.… Read more

Sample Return from Mars Begins in Earnest

This image taken by NASA’s Perseverance rover on Sept. 7, 2021 shows two holes where the rover’s drill obtained chalk-size samples from a rock nicknamed “Rochette.” They are the first physical manifestations of the NASA’s long-planned Mars Sample Return Mission. (NASA/JPL-Caltech.)

For the first time ever, a sample of pulverized rock from another planet has been drilled, collected and stored for eventual delivery to the highest-tech labs on Earth.

Yes, a storehouse of rocks were collected on the moon by Apollo astronauts and delivered to Houston, and some small samples of two asteroids and one comet were snatched by three spacecraft (two Japanese and one American) and their contents were brought here for study.

But never before has the surface of another planet been the source of precious extraterrestrial material that some day, if all goes well, will be received on Earth for intensive analysis.

The feat was accomplished by the team that operates the Perseverance rover on Mars.  After an unsuccessful effort to drill what turned out to be a very soft rock in August , the rover drill succeeded in digging into a briefcase-sized hard volcanic rock twice this month and pulling out samples to be tubed and stored for later pick-up by a different mission.

That next step isn’t scheduled for another half decade and the samples would not arrived on Earth until well after that.  But a long-dreamed and highly-ambitious effort to bring some of Mars to Earth (called Mars Sample Return) has now formally begun.

“This is a truly historic achievement, the very first rock cores collected on another terrestrial planet — it’s amazing,” Meenakshi Wadhwa, Mars sample return principal scientist at NASA’s Jet Propulsion Laboratory, said during a news conference held Friday

“In our science community, we’ve talked about Mars sample return for decades,” Wadhwa said. “And now it’s actually starting to feel real.”

Perseverance’s first cored-rock sample of Mars is seen inside its titanium container tube in this image taken by the rover’s Sampling and Caching System Camera, known as CacheCam. (NASA/JPL-Caltech)

The press conference was a victory lap of sorts for leaders of a team with many members who have worked eight to ten years for this moment.  Lori Glaze, NASA’s director of the Planetary Science Division, also called it an historic achievement –the culmination of advances pioneered by many other NASA missions to Mars and elsewhere and a milestone for NASA’s Mars program.… Read more

The Many Ways The James Webb Space Telescope Could Fail

Artist rendering of the James Webb Space Telescope when it has opened and is operating. The telescope is scheduled to launch in November, 2021. (NASA)

When a damaged Apollo 13 and its crew were careening to Earth, mission control director Gene Kranz famously told the assembled NASA team that “failure is not an option.”  Actually, the actor playing Kranz in the “Apollo 13” movie spoke those words, but by all accounts Kranz and his team lived that phrase, with a drive that became a reality.

That kind of hard-driving confidence now seems to be built into NASA’s DNA, and with some tragic exceptions it has served the agency well in its myriad high-precision and high-drama ventures.

So it was somewhat surprising (and a bit refreshing)  to read the recent blog post from Thomas Zurbuchen,  NASA’s Associate  Administrator for the Space Science Directorate, on the subject of the scheduled November launch of the James Webb Space Telescope.

Thomas Zurbuchen, NASA’s Associate Administrator of the Space Science Directorate, with the new eyeglasses he introduced in his blog. (NASA)

“Those who are not worried or even terrified about (the challenges facing the JWST mission) are not understanding what we are trying to do,” he wrote.

“For most missions, launch contributes the majority of mission risk – if the spacecraft is in space, most risk is behind us. There are few types of missions that are very much different with most risk coming after launch.

“We have already performed one such mission in February when we landed on Mars. For the Perseverance rover, only 10-20% of the risk was retired during launch, perhaps 50% during the landing, and we are in the middle of the residual risk burn down as we are getting ready to drill and collect the precious Mars samples with the most complex mechanical system ever sent to another planet.

“The second such mission this year is Webb. Like a transformer in the movies, about 50 deployments need to occur after launch to set up the huge system. With 344 so-called single point failures – individual steps that have to work for the mission to be a success – this deployment after launch will keep us on edge for 3 weeks or so. For comparison, this exceeds single point failures for landing on Mars by a factor of 3, and that landing lasted only 7 minutes.”

Zurbuchen is confident that the Webb team and technology is up to the challenge but still, that is quite a risk profile.… Read more

The Surface of Venus Was Thought to Be Stagnant. But This May Not Be True

An oblique radar view of the largest “pack ice” block in the Venus lowlands identified by Byrne et al. (Paul Byrne, based on original NASA/JPL imagery).

The two Earth-sized planets in our solar system have taken wildly different evolutionary routes. The surface of the Earth became a temperate utopia for a liquid water and a myriad of life. But while similar in both size and mass, the surface of the neighboring Venus is hot enough to melt lead.

These differences are the key to understanding the possible outcomes for a rocky planet after it forms out of the dusty disk around a young star. Knowledge of the rocky options is needed to identify the surface environments of extrasolar planets from the limited data we can gleam through our telescopes, and to unpick the properties needed to form a habitable planet. It is a task considered so important that three new Venus missions were approved by NASA and ESA in the last month.

(Read about these missions on Many Worlds here and here)

One such difference between the Earth and Venus is the type of planet surface or, more precisely, the structure of the planet lithosphere that comprises of the crust and uppermost part of the mantle.

The Earth’s lithosphere is broken into mobile chunks that can subduct beneath one another, bunch up to form mountain rages, or pull part. This motion is known as plate tectonics, and it allows material to be cycled between our surface and the hidden mantle deep below our feet. It is a geological process that replenishes nutrients, cools the planet interior, and also forms part of the Earth’s carbon cycle that adjusts the levels of carbon dioxide in our atmosphere to keep our environment temperate. Without this cycling ability, the Earth would not have been able to stay habitable over such a long period.

Venus and the Earth are extremely close in size and mass. Yet, only the Earth developed plate tectonics (ESA).

By contrast, the lithosphere of Venus does not form plates. This prevents carbon from being drawn into the mantle, and any nutrients below the surface are unreachable. Indeed, the surface of Venus has long been thought to be a single piece of immobile, stagnant lid, with no connection at all with the planet interior.

Not only does the lack of geological processes throttle Venus’s environment, the seemingly complete immobility of the lithosphere was extremely annoying.… Read more

« Older posts Newer posts »

© 2022 Many Worlds

Theme by Anders NorenUp ↑