Category: Missions (page 2 of 13)

NASA Suceeds in Making Precious Oxygen from Carbon Dioxide on Mars

 

Technicians in the Jet Propulsion Laboratory clean room lowered the Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) instrument into the belly of the Perseverance rover in 2019. MOXIE was designed to  “breathe in” the CO2-rich atmosphere and “breathe out” a small amount of oxygen, to demonstrate a technology that could be critical for future human missions to Mars.  (NASA/JPL-Caltech)

Of the many barriers to a human trip to Mars where astronauts would land, explore and return to Earth,  the absence of oxygen in the Martian atmosphere is a big one.  Without oxygen that can be collected to support life and to provide fuel for a flight home,  there can be no successful human mission to the planet.

So the results of a proof-of-concept trial on Mars that turned carbon dioxide into oxygen is positive news for sure.  The instrument — called MOXIE on the rover Perseverance — successfully produced oxygen from carbon dioxide seven times last year, and convinced its inventors (and NASA) that it is a technology that can be of substantial importance.

While the amount of oxygen was not great — about 50 grams of the gas combined from the seven trials — the process worked well enough to strongly suggest that it could some day produce oxygen on a large scale.

“MOXIE has shown that (the deployed) technology for producing oxygen on Mars from the atmosphere is viable, is scalable, and meets expectations for efficiency and quality,” an MIT team led by Jeffrey Hoffman wrote in a Science Advances article released today.

They wrote that although long-term durability and resilience remain to be demonstrated and future efforts need to improve the instrument’s monitoring and controlling capabilities,  “all indications are that a scaled-up version of MOXIE could produce oxygen in sufficient quantity and with acceptable reliability to support future human exploration.”

The perseverance rover, in a selfie taken in late 2020, is the first to carry an instrument that can produce oxygen on Mars. (NASA)

The size of both the problem and the opportunity can be seen in the fact that carbon dioxide makes up more than 95 percent of the Martian atmosphere while oxygen is only a miniscule 0.13 percent of the atmosphere.  (Oxygen makes up 21 percent of the atmosphere on Earth.)

Transporting oxygen to Mars to fuel for a trip home is considered impractical because to burn its fuel a rocket must have substantial and weighty supplies of oxygen.… Read more

Icy Moons, And Exploring The Secrets They Hold

Voyager 2’s flew by the Uranian moon Miranda in 1986 and the spacecraft spent 17 minutes taking  photos to make this high-resolution portrait.  Miranda has three oval and trapezoid coronae, tectonic features whose origins remain debated. (NASA / JPL / Ted Stryk)

When it come to habitable environments in our solar system, there’s Earth, perhaps Mars billions of years ago and then a slew of ice-covered moons that are likely to have global oceans under their crusts.  Many of you are familiar with Europa (a moon of Jupiter) and Enceladus (a moon of Saturn) — which have either been explored by NASA or will be in the years ahead.

But there quite a few others icy moons that scientists find intriguing and just possibly habitable.  There is Ganymede,  the largest moon of Jupiter and larger than Mercury but only 40 percent as dense, strongly suggesting a vast supply of water inside rather than rock.

There’s Saturn’s moon Titan, which is known for its methane lakes and seas on the surface but which has a subterranean ocean as well.  There is Callisto, the second largest moon of Jupiter and an subsurface-ocean candidates and even Pluto and Ceres, now called dwarf planets that show signs of having interior oceans.

And of increasing interest are several of the icy moons of Uranus, particularly Ariel and Miranda.  Each has features consistent with a subsurface ocean and even geological activity.  Although Uranus is a distant planet, well past Jupiter and Saturn and would take more than a decade to just get there, the possibility of a future Uranus mission is becoming increasingly real.

The National Academy of Sciences (NAS) Decadal Survey for planetary science rated a Uranus mission as the highest priority in the field, and just today (Aug. 18) NASA embraced the concept.

At a NASA Planetary Science Division town hall meeting, Director Lori Glaze said the agency was “very excited” about the Uranus mission recommendation from the National Academy and that she hoped and expected some studies could be funded and begun in fiscal 2024.

If a Uranus mission is fully embraced,  it would be the first ever specifically to an ice giant system — exploring the planet and its moons.  This heightened interest reflects the fact that many in the exoplanet field now hold that ice giant systems are the most common in the galaxy and that icy moons may well be common as well.… Read more

Despite Everything, American-Russian Relations on the International Space Station Appear To Be Solid

The International Space Station, which orbits 248 miles above Earth,  in what is called low-Earth orbit. Its long success as an international collaboration has been tested by the Ukraine war. (NASA)

Late last month, it appeared that Russian participation in the International Space Station would end in 2024 — or so seemed to say the head of the Russian space agency, Roscosmos  Thirty years of unusual and successful cooperation would be coming to a close as the Ukraine war appeared to make longer-term commitments impossible, or undesirable for the Russian side.

But on a day when the Ukraine war raged for its 163rd day, when new Western sanctions were being put into place, when a Russian judge gave WNBA star Brittney Griner a provocative 9-year prison term for carrying small amounts of cannabis oil as she left Moscow, and just a short time after what seemed to be the Russian announcement of that 2024 departure,  NASA officials held a commodious press conference with Roscosmos Executive Director for Human Space Programs Sergei Krikalev and others involved with the ISS.

Together they spoke yesterday (August 4) of expanding American-Russian cooperation on the mission and discounted talk of a 2024 Russian exit.

“We always talk of spaceflight as being team support,” said Kathy Lueders, NASA’s associate administrator of NASA’s Space Operations, which oversees the ISS. “And this news conference will exemplify how it is a team sport.”

She then discussed  how and why a Russian cosmonaut would soon take a SpaceX flight to the ISS as part of a new program under which Russian cosmonauts and American astronauts can fly on each other’s ISS-and-homeward-bound spacecraft.  The flight by veteran cosmonaut Anna Kikina will mark the first time a Russian has flown on an American spacecraft.

In the press conference, Krikalev then insisted that Russia had no intention of leaving the station in 2024 but rather would begin looking at the logistics of departing at that time — with an eye to leaving for their own planned space station in the years ahead.

“As far as the statement for 2024, perhaps something was lost in translation,” he said. “The statement actually said Russia will not pull out until after 2024.  That may be in 2025, 2028 or 2030.”   He said the timetable “will depend on the technical condition of the station.”

In the good-natured spirit of the press conference, Krikalev said that he was “happy to see so many faces I’ve known for many years.” 

Read more

Reports From Inside the Sun’s Corona

This movie is built from images taken over 10 days during the full perihelion encounter when the spacecraft was nearing the Sun’s corona. The perihelion is a brief moment during the encounter time, when the spacecraft is at its closest point to the Sun. The movie is from orbit 10 and dates and distances are on the frames, and changing locations of planets are in red.  (AHL/JHU; NASA)

To borrow from singer Paul Simon, these are definitely days of miracles and wonders — at least when it comes to exploring and understanding our Sun.

The Parker Solar Probe has been swinging further and further into the Sun’s corona, having just finished its 12th of 24 descents into a world of super-heated matter (plasma) where no human creation has ever gone.

The probe has dipped as close as 5.3 million miles from the surface of the sun — Mercury is 32 million miles from that solar surface — and is flying through the solar wind, through streamers (rays of magnetized solar material)  and even at times through coronal mass ejections, those huge eruptions of magnetized plasma flying at speeds up to nearly 2,000 miles per second.

This is all a goldmine for solar scientists, an opportunity to study our star — and by extension all stars — up close and to learn much more about how it works.

At a four-day conference at the Johns Hopkins University Applied Physics Lab late last month, scores of scientists described the results of their early observations and analyses of the measurements and images coming from the Parker Probe via its The Wide-Field Imager (WISPR) and instruments that measure energy and magnetic flows.  The results have often surprising and, as some scientists said, “thrilling.”

“Parker Solar Probe was developed to answer some of the biggest puzzles, biggest questions about our Sun,” said Nour Raouafi, project scientist for the Parker Solar Probe.

“We have learned so much that we believe we are getting close to finding some important answers.  And we think the answers will be quite big for our field, and for science.”

The Parker Solar Probe had observed many switchbacks in the corona— traveling disturbances in the solar wind that cause the magnetic field to bend back on itself.  They are an as-yet unexplained phenomenon that might help scientists uncover more information about how the solar wind is accelerated from the Sun. (NASA’s Goddard Space Flight Center/Conceptual Image Lab/Adriana Manrique Gutierrez)

Among the many unexpected solar features and forces detected by the Parker Probe is the widespread presence of switchbacks, rapid flips of the Sun’s magnetic field moving away from the Sun. … Read more

Mars Was Once Wetter and Warmer And It Had Life-Essential Organic Carbon. Was There Enough for Life to Emerge?

Yellowknife Bay in Gale Crater, Mars, was extensively studied by the Curiousity rover in 2011-12 and was declared to have been “habitable” long ago.  But the amount of life-essential organic carbon at the site appeared to be low, and now has been measured in detail. (NASA)

In the early days of the Curiosity mission on Mars, scientists were excited by what they found in what was once a mud-flat they called Yellowknife Bay.  After months of drilling and testing, the mission team concluded that the site once had the roughly neutral water, an array of chemicals that could support metabolism and the organic carbon compounds needed for life.  So Yellowknife Bay and the surrounding Gale Crater were deemed to have once been “habitable.”

The finding of organic carbon was a major step forward because it is essential as a building block for the emergence of life as we know it.  The readings were clear that the organic carbon was present, but it has taken a decade to produce the first measurement of how much of the precious organic carbon was present.

The results, published late last month in the Proceedings of the National Academy of Sciences, show higher organic carbon levels than in some “low-life” environments on Earth.  But those levels are still quite reduced and point to an unwelcoming Mars even in an area declared to be habitable billions of years ago when Mars was wetter and warmer.

“Total organic carbon is one of several measurements that help us understand how much material is available as feedstock for prebiotic chemistry and potentially biology,” said Jennifer Stern of NASA’s Goddard Space Flight Center.

“We found at least 200 to 273 parts per million of organic carbon. This is comparable to or even more than the amount found in rocks in very low-life places on Earth, such as parts of the Atacama Desert in South America, and more than has been detected in Mars meteorites.”

The Atacama is one of the driest places on Earth, but it does support some life — bacteria under the surface of the desert and even some desert flowers in areas that experience fog.  Not surprisingly, NASA and other scientists often use the Atacama when they study conditions on ancient Mars.

The Atacama desert in Chile is one of the driest places on Earth and is often studied as a Mars analog. (Shudderstock)

This carbon data has been a long time coming.

Read more

New Research Finds The Very Early Solar System Went Through an Especially Intense Period of Asteroid Collisions

An artist’s view of the very early solar system, where dust was collecting into small rocks, which smashed into each other and some became larger. The height of the crash-ups took place during a surprisingly short period of time. (Tobias Stierli, flaeck / PlanetS)

In the earliest days of our solar system — before any planets had been cobbled together — the recently formed Sun was circled by cosmic gas and dust. Over time, fragments of rock formed from the dust and many of these orbiting rocks smashed together and some became the gradually larger components of planets-to-be.  Others were not part of any planet formation and became asteroids orbiting the Sun, and sometimes falling to Earth as meteorites.

Scientists have found that these asteroids (and their Earth-bound pieces) remained relatively unchanged since their formation billions of years ago.

And so they provide an archive of sorts, in which the conditions of the early solar system are preserved.

Alison Hunt, a planetary scientist at ETH Zurich in Switzerland, led a team that looked at some of that early solar system history and came up with some surprising results.

She and her team at the Swiss National Centre of Competence in Research (NCCR) PlanetS found that almost all of the asteroidal-cores-turned-meteorites they studied had been formed in a short four-million-year period starting almost eight million years the solar system first came into being.  A four million-year time span is short in astronomical terms and also unusual in terms of the precision achieved for the dating.

These results, and some inferences about why this period was so chaotic in the early solar system, were reported in Nature Astronomy late last month.

But before we look at why this might have happened, let’s explore a bit about how the team achieved such precise data about when many asteroids were formed.

One of the iron meteorite samples the team analyzed that was, long ago, the core of an asteroid. (Aurelia Meister)

To access this asteroid/meteorite archive, the researchers had to prepare and examine the extraterrestrial material from iron meteorites that had fallen to Earth.  Once part of the metallic cores of asteroids, samples from 18 different iron meteorites were used in the analysis.

The researchers first had to dissolve the samples to be able to isolate the elements palladium, silver and platinum — the key to their efforts.

Using a mass spectrometer they measured abundances of different and identifiable isotopes of these elements, and with their results they could put tighter constraints on the timing of events in the early solar system.

Read more

Evolving Views of Our Heliosphere Home

Does this model show of the actual shape of the heliosphere, with lines of magnetic fields around it? New research suggests so. The size and shape of the magnetic “force field” that protects our solar system from deadly cosmic rays has long been debated by astrophysicists. (Merav Opher, et. al)

We can’t see the heliosphere.  We know where it starts but not really where it ends.  And we are pretty certain that most stars, and therefore most planetary systems, are bounded by heliospheres, or “astropheres,” as well.

It has a measurable physical presence, but it is always changing.  And although it is hardly well known, it plays a substantial role in the dynamics of our solar system and our lives.

As it is studied further and deeper, it has become apparent that the heliosphere might be important — maybe even essential – for the existence of life on Earth and anywhere else it may exist.  Often likened to an enormous bubble or cocoon, it is the protected space in which our solar system and more exists.

Despite the fact that it is the largest physical system in the entire solar system, the heliosphere was only discovered at the dawn of the space age in the late 1950’s, when it was theorized by University of Chicago physicist Eugene Parker as being the result of what he termed the solar wind.

It took another decade for satellite measurements to confirm its existence and to determine some of its properties — that it is made up of an endless supply of charged particles that are shot off the sun — too hot to form into atoms. Together these particles,  which are superimposed with the interplanetary magnetic field, constitute the ingredients of he heliosphere.

Just as the Earth’s magnetic fields protect us from some of the effects of the Sun’s hazardous emanations, the heliosphere protects everything inside its bubble from many, though not all, of the incoming and more hazardous high-energy cosmic rays headed our way.

As measurable proof that the heliosphere does offer significant protection, when the Voyager 1 spacecraft left the heliosphere in 2012 and entered the intersellar medium, instruments onboard detected a tripling of amount of cosmic radiation suddenly hitting the spacecraft.

A comet-shaped traditional view of the structure of the heliosphere, with the sun in the middle of the circle, planets orbiting around and the solar wind trailing as the Sun orbits the Milky Way.  

Read more

NASA’s Perseverance Rover on Mars; an Update

 

The composite images of “Delta Scarp” in Jezero Crater reveal that billions of years ago, when Mars had an atmosphere thick enough to support water flowing across its surface, Jezero’s fan-shaped river delta apparently experienced a late-stage flooding events that carried rocks and debris into it from the highlands well outside the crater. (RMI: NASA/JPL-Caltech/LANL/CNES/CNRS/ASU/MSSS).

NASA’s Perseverance rover has been on Mars for fifteen months now and is about to begin its trek into the fossil delta of Jezero Crater.  It’s a big deal for the mission, because the delta is where water once flowed long enough and strongly enough to smooth, round and move large rocks.

Since proof of the long-ago presence of water means the area was potentially habitable — especially a delta that spreads out into what were once calm rivulets — this is where the astrobiology goals of the mission come to the fore.

Or so the Perseverance team thought it would play out.

But the big surprise of the mission so far has been that the rover landed on igneous rock, formed in the Martian interior, spewed out and crystalized and solidified on the surface.

That Perseverance would land on igneous rock was always seen as a possibility, but a more likely outcome was landing on sedimentary rock as in  Gale Crater, where the Curiosity rover continues its decade-long explore. Sedimentary rock is laid down in layers in the presence of water.

Perseverance takes a selfie in Jezero. The rover is a twin of the Curiosity rover, but with some upgrades and new instruments (NASA/JPL-Caltech/MSSS)

As explained last week at the Ab-Sci-Con 2022 conference in Atlanta, the deputy program scientist for the mission — Katie Stack Morgan of NASA’s Jet Propulsion Lab — from the mission’s perspective the presence of both igneous and nearby sedimentary rock offers the best of both worlds.

While sedimentary rock is traditionally where scientists look for signs of ancient life, igneous rock can date the site more exactly and it can potentially better preserve any signs of early microbial life.

And in the context of Perseverance, the presence of accessible and compelling igneous formations provides for the diversity of rock samples called for in the Mars Sample Return effort — another central part of the rover’s mission.

“We did a lot of work with our different instruments to come to the conclusion that we landed on  igneous rock,” Stack Morgan later said in an interview. … Read more

A Clue Into The Makeup of Jupiter’s Moon Europa Provided by the Greenland Ice Sheet

Double ridge ice formations seen on Europa are similar to formations detected on the Greenland Ice Sheet. This artist’s rendering shows how double ridges on the surface of Jupiter’s moon Europa may form over shallow, refreezing water pockets within the ice shell. This mechanism is based on the study of an analogous double ridge feature found on Earth’s Greenland Ice Sheet. (Justice Blaine Wainwright)

Europa’s ice crust is crossed by thousands of double ridges, pairs of long parallel raised lines with a small valleys in between, sometimes as much as hundreds of miles long and skyscraper-height tall rims. While these double ridges are ubiquitous on Europa’s surface, how they form remains something of a mystery to scientists.

Dustin Schroeder, an associate professor of geophysics at Stanford University’s School of Earth, Energy & Environmental Sciences, was working on an issue related to climate change when he saw double ridges similar to those seen on Europa here on Earth.  The ridges, in Northwest Greenland, were tiny when compared with those on Europa, but the found the same “M”-shaped crest as found everywhere on that Jovian moon.

“We were working on something totally different related to climate change and its impact on the surface of Greenland when we saw these tiny double ridges – and we were able to see the ridges go from ‘not formed’ to ‘formed,’ ” Schroeder said.

Could the double ridges be forming as a result of processes similar to those that form the double ridges on Europa?

If so, then Greenland would provide a possibly important new window into a central question about Europa:  Is that thick ice shell surrounding the subsurface ocean completely solid, or does it have what are called “water sills” within the shell?

This is important because, as the Nature Communications paper concludes, “If the same process is responsible for Europa’s double ridges, our results suggest that shallow liquid water is spatially and temporally ubiquitous across Europa’s ice shell.”

Or as Schroeder put it, “If the mechanism we see in Greenland is how these things happen on Europa, it suggests there’s water everywhere,” he said in a release.

They can make this inference because the double ridges formed in Greenland are the known, and detectable, result of the dynamics of subsurface water surrounded by the ice sheet.

Surface imagery comparison of a double ridge on Europa (a) and on Earth (b), on the Northwest Greenland Ice Sheet.

Read more

“Nature Has Become More Beautiful.” Physicist Eugene Parker and his Life Unlocking Secrets Of The Sun

 

Parker with an image of the solar corona, the outermost portion of Sun’s atmosphere.  Parker brought new understanding to the nature and workings of the corona and the solar wind, which originates in the corona. (University of Chicago)

When  Eugene Parker was 16 years old,  he decided he didn’t want to spend the summer hanging out in suburban Detroit.  So Parker went up to the state capital looking to buy some tax delinquent land held by the state.

He selected a 40-acre piece of woods in far-off Cheboygan County, not far from Mackinac Island.  There was nothing on the land but trees.  He bought it with $120 from his own earlier summertime earnings.

Over the next three summers, Parker, his younger brother and sometimes a cousin and a friend constructed a log cabin on the land.  Because this was during World War II and gas was strictly rationed,  they couldn’t ask their parents for a ride up, and so they often bicycled the more than 300 miles to their homestead.

The cabin still doesn’t have electricity or indoor running water, but it has been used regularly by Parker and his family for almost 80 years.  And in many ways, that cabin reflects the basic character, the drive and the profound originality of the boy who built it and went on to become one of the great theoretical physicists of the 20th century.

The young Parker atop a birch  tree in 1943, on the site where his northern Michigan cabin would be built. (Courtesy of the Parker family.)

Eugene Parker, who passed away earlier this month at 94, has been hailed as the father of solar physics and is perhaps best known as the man who — basically single-handedly and despite many eminent critics –came up with the theory of the “solar wind,” a torrent of charged particles and magnetic fields that always and in all directions is blasting out from the Sun.

Parker’s innumerable achievements in his field, as well as his old-school civility and demeanor, earned him the first and only honor of its kind given by NASA — having a major space mission named after him while alive.

Ailing and aged 91, he nonetheless went with his family down to Florida in 2018 to watch the launch of the Parker Solar Probe — an extraordinary mission that flies through the blast furnace of the Sun’s corona in its effort to learn more about the origins of the solar wind and the forces at play that produce that still mysterious solar corona.… Read more

« Older posts Newer posts »

© 2023 Many Worlds

Theme by Anders NorenUp ↑