Category: Missions (page 1 of 7)

Hayabusa2 Snatches Second Asteroid Sample

Artist impression of the Hayabusa2 spacecraft touching down on asteroid Ryugu (JAXA / Akihiro Ikeshita)

“1… 2… 3… 4…”

The counting in the Hayabusa2 control room at the Japan Aerospace Exploration Agency’s Institute of Space and Astronautical Sciences (JAXA, ISAS) took on a rhythmic beat as everyone in the room took up the chant, their eyes fixed on the large display mounted on one wall.

“10… 11… 12… 13…”

The display showed the line-of-sight velocity (speed away from or towards the Earth) of the Hayabusa2 spacecraft. The spacecraft was about 240,000,000 km from the Earth where it was studying a near-Earth asteroid known as Ryugu. At this moment, the spacecraft was dropping to the asteroid surface to collect a sample of the rocky body.

“20… 21… 22… 23…”

Asteroid Ryugu from an altitude of 6km. Image was captured with the Optical Navigation Camera – Telescopic (ONC-T) on July 20, 2018 ( JAXA, University of Tokyo & collaborators)

Asteroid Ryugu is a carbonaceous or “C-type” asteroid; a class of small celestial bodies thought to contain organic material and undergone relatively little alteration since the beginning of the Solar System. Rocks similar to Ryugu would have pelted the early Earth, possibly delivering both water and the first ingredients for life to our young planet. Where and when these asteroids formed and how they moved through the Solar System is therefore a question of paramount importance to understanding how terrestrial planets like the Earth became habitable. It is a question not only tied to our own existence, but also to assessing the prospect of life elsewhere in the Universe.

The Hayabusa2 mission arrived at asteroid Ryugu just over one year ago at the end of June 2018. The spacecraft remotely analyzed the asteroid and deployed two rovers and a lander to explore the surface. Then in February of this year, the spacecraft performed its own descent to touchdown and collect a sample. The material gathered will be analyzed back on Earth when the spacecraft returns home at the end of 2020.

Touchdown is one of the most dangerous operation in the mission. The distances involved mean that it took about 19 minutes to communicate with the spacecraft during the first touchdown and 13 minutes during the second touchdown, when the asteroid had moved slightly closer to Earth. Both these durations are too long to manually guide the spacecraft to the asteroid surface.… Read more

Curiosity Rover as Seen From High Above by Mars Orbiter

A camera on board NASA’s Mars Reconnaissance Orbiter recently spotted the Curiosity rover in Gale Crater.  The image is color-enhanced to allow surface features to become more visible. (NASA/JPL-Caltech)

This is Apollo memory month, when the 50th anniversary arrives of the first landing of astronauts on the moon.  It was a very big deal and certainly deserves attention and applause.

But there’s something unsettling about the anniversary as well, a sense that the human exploration side of NASA’s mission has disappointed and that its best days were many decades ago.   After all, it has been quite a few years now since NASA has been able to even get an astronaut to the International Space Station without riding in a Russian capsule.

There have been wondrous (and brave) NASA human missions since Apollo — the several trips to the Hubble Space Telescope for emergency repair and upgrade come to mind — but many people who equate NASA with human space exploration are understandably dismayed.

This Many Worlds column does not focus on human space exploration, but rather on the science coming from space telescopes, solar system missions, and the search for life beyond Earth.

And as I have argued before, the period that following the last Apollo mission and began with the 1976 Viking landings on Mars has been — and continues to be — the golden era of space science.

This image of Curiosity,  which is now exploring an area that has been named Woodland Bay in Gale Crater, helps make the case.

Taken on May 31 by the HiRISE camera of NASA’s Mars Reconnaissance Orbiter (MRO), it shows the rover in a geological formation that holds remains of ancient clay.  This is important because clay can be hospitable to life, and Curiosity has already proven that Mars once had the water, organic compounds and early climate to support life.

The MRO orbits between 150 and 200 miles above Mars, so this detailed image is quite a feat.

The arm of the Curiosity rover examines the once-watery remains at Woodland Bay, Gale Crater. (NASA/JPL-Caltech)

Curiosity landed on Mars for what was planned as a mission of two years-plus. That was seven years ago this coming August.

The rover has had some ups and downs and has moved more slowly than planned, but it remains in motion — collecting paradigm-shifting information, drilling into the Mars surface, taking glorious images and making its way up the slopes of Gale Crater. … Read more

NASA Announces Astrobiology Mission to Titan

 

The Dragonfly drone has been selected as the next New Frontiers mission, this time to Saturn’s moon Titan.  Animation of the vehicle taking off from the surface of the moon. (NASA)

A vehicle that flies like a drone and will try to unravel some of the mysteries of Saturn’s moon Titan was selected yesterday to be the next New Frontiers mission to explore the solar system.

Searching for the building blocks of life,  the Dragonfly mission will be able to fly multiple sorties to sample and examine sites around Saturn’s icy moon.

Titan has a thick atmosphere and features a variety of hydrocarbons, with rivers and lakes of methane, ethane and natural gas, as well as and precipitation cycles like on Earth.  As a result, Dragonfly has been described as an astrobiology mission because it will search for signs of the prebiotic environments like those on Earth that gave rise to life.

“Titan is unlike any other place in the solar system, and Dragonfly is like no other mission,” said Thomas Zurbuchen, NASA’s associate administrator for science at the agency headquarters in Washington.

“It’s remarkable to think of this rotorcraft flying miles and miles across the organic sand dunes of Saturn’s largest moon, exploring the processes that shape this extraordinary environment. Dragonfly will visit a world filled with a wide variety of organic compounds, which are the building blocks of life and could teach us about the origin of life itself.”

 

Saturn’s moon Titan is significantly larger than our moon, and larger than the planet Mercury. It features river channels of ethane and methane, and lakes of liquified natural gas. It is the only other celestial body in our solar system that has flowing liquid on its surface. (NASA)

As described in a NASA release, Titan is an analog to the very early Earth, and can provide clues to how life may have arisen on our planet.

Dragonfly will explore environments ranging from organic dunes to the floor of an impact crater where liquid water and complex organic materials key to life once existed together for possibly tens of thousands of years. Its instruments will study how far prebiotic chemistry may have progressed.

They also will investigate the moon’s atmospheric and surface properties and its subsurface ocean and liquid reservoirs. Additionally, instruments will search for chemical evidence of past or extant life.

Because it is so far from the sun, Titan’s surface temperature is around -290 degrees Fahrenheit and its surface pressure is 50 percent higher than Earth’s.… Read more

Methane on Mars. Here Today, Gone Tomorrow

On the 2,440th Martian day at Gale Crater, the Curiosity rover detected a large spike in the presence of the gas methane. It was by far the largest plume detected by the rover, and parallels an earlier ground-based discovery of an even larger plume of the gas.  (NASA, JPL-Caltech, MSSS)

The presence — and absence — of methane gas on Mars has been both very intriguing and very confusing for years.  And news coming out last week and then on Monday adds to this scientific mystery.

To the great surprise of the Curiosity rover team, their Sample Analysis on Mars instrument sent back a measurement of 21 parts per billion of methane on Thursday — by far the highest measurement since the rover landed at Gale Crater.

As Paul Mahaffy, principal investigator of the instrument that made the measurement, described it yesterday at a large astrobiology conference in Seattle, “We were dumbfounded.”

And then a few days later, all the methane was gone.   Mahaffy, and NASA headquarters, reported that the readings went down quickly to below 1 part per billion.

These perplexing findings are especially important because methane could — and also could not — be a byproduct of biology.  On Earth, more than 90 percent of methane is produced via biology.  On Mars — at this point, nobody knows.  But the question has certainly gotten scientists’ attention.

The most recent finding of a return to low methane levels suggests that last week’s methane detection was one of the transient methane plumes that have been observed in the past. While Curiosity scientists have noted background levels rise and fall seasonally, they haven’t found a pattern in the occurrence of these transient plumes.

“The methane mystery continues,” said Ashwin Vasavada, Curiosity’s project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California. “We’re more motivated than ever to keep measuring and put our brains together to figure out how methane behaves in the Martian atmosphere.”

This image was taken by the left Navcam on the Curiosity Mars rover on June 18, 2019, the day when a methane plume was detected.  It shows part of “Teal Ridge,” which the rover has been studying within a region called the “clay-bearing unit.” (NASA/JPL-Caltech)

The nature and size of this most recent methane plume will, by chance, be the most widely observed so far.

That’s because the Mars Express orbiter happened to be performing spot tracking observations at the Gale Crater right around the time Curiosity detected the methane spike. … Read more

Great Nations Need Great Observatories

This new image from NASA’s Hubble Space Telescope, shows the tentacled Southern Crab Nebula. The nebula, officially known as Hen 2-104, appears to have two nested hourglass-shaped structures that were sculpted by a whirling pair of stars in a binary system. The duo consists of an aging red giant star and a burned-out star, a white dwarf. The red giant is shedding its outer layers and some of this ejected material is attracted by the gravity of the companion white dwarf. The result is that both stars are embedded in a flat disk of gas stretching between them. This belt of material constricts the outflow of gas so that it only speeds away above and below the disk. The result is an hourglass-shaped nebula. The bubbles of gas and dust appear brightest at the edges, giving the illusion of crab leg structures. These “legs” are likely to be the places where the outflow slams into surrounding interstellar gas and dust, or possibly material which was earlier lost by the red giant star.  (NASA and ESA)

The Hubble Space Telescope, arguably the jewel in the crown of NASA’s science missions, was launched 29 years ago.  It has been providing scientists and the public with a steady stream of previously unimagined insights about the cosmos — plus those jaw-dropping, very high-resolution images like the one above — pretty much ever since.

It has also provided the best example to date of what humans can do in space with its five repair and upgrade missions.  It did indeed launch to great skepticism, especially after a near fatal flaw was found in its key mirror.  It was also considered over budget at launch, way behind schedule and questionable scientifically and had to be fixed in orbit 353 miles into space.

The Hubble Space Telescope after its second repair and upgrade mission in 1998. (NASA)

But almost three decades into its mission now — and with decades more service likely — it clearly shows what an exceedingly ambitious project can deliver and the level of excellence that NASA, its European Space Agency partner and space scientists and engineers can achieve.  Talk about soft power.

This is important to remember as the agency’s 40-year-old Great Observatories program –that the Hubble Telescope is a part of –is under considerable threat.

The mission that was supposed to fly in the 2010s, the James Webb Space Telescope, is also way over budget, way behind schedule, and now described as a financial threat to other NASA missions. … Read more

Our Ever-Growing Menagerie of Exoplanets

While we have never seen an exoplanet with anything near this kind of detail, scientists and artists now do know enough to represent them with characteristics that are plausible, given what is known about them..  (NASA)

With so many exoplanets already detected, with the pace of discovery continuing to be so fast, and with efforts to find more distant worlds so constant and global,  it’s easy to become somewhat blase´ about new discoveries.  After so many “firsts,” and so many different kinds of planets found in very different ways, it certainly seems that some of the thrill may be gone.

Surely the detection of a clearly “Earth-like planet” would cause new excitement — one that is not only orbiting in the habitable zone of its host star but also has signs of a potentially nurturing atmosphere in a generally supportive cosmic neighborhood.

But while many an exoplanet has been described as somewhat “Earth-like” and potentially habitable, further observation has consistently reduced the possibility of the planets actually hosting some form of biology.  The technology and knowledge base needed to find distant life is surely advancing, but it may well still have a long way to go.

In just the last few days, however, a slew of discoveries have been reported that highlight the allure and science of our new Exoplanet Era.  They may not be blockbusters by themselves, but they are together part of an immense scientific exploration under way, one that is re-shaping our understanding of the cosmos and preparing us for bigger discoveries and insights to come.

 

Already 3,940 exoplanets have been identified (as of April 17) with an additional 3,504 candidates waiting to be confirmed or discarded.  this is but the start since it is widely held now that virtually every star out there has a planet, or planets, orbiting it.   That’s billions of billions of planets.  This image is a collection of NASA exoplanet renderings.

What I have in mind are these discoveries:

  • The first Earth-sized planet detected by NASA’s year-old orbiting telescope TESS (Transiting Exoplanet Survey Satellite.)  TESS is designed to find planets orbiting massive stars in our near neighborhood, and it has already made 10 confirmed discoveries.  But finding a small exoplanet — 85 percent the size of Earth — is a promising result for a mission designed to not only locate as many as 20,000 new exoplanets, but to find 500 to 1,000 the rough size of Earth or SuperEarth. 
Read more

The “Twin Study,” and What it Does and Does Not Say About The Health Hazards of Space Travel

Buzz Aldrin on the moon in 1969, photographed by first-on-the-moon astronaut Neil Armstrong (NASA)

 

When Buzz Aldrin became the second man to ever walk on the moon, his lunar escapades, along with those of Neil Armstrong,  were a cause of national and pretty much global joy, wonder and pride.   That the mission was hazardous was self-evident — from launch to the ad-lib and hair-raising landing on the moon, to return to Earth– but the nation and certainly the astronauts were more than ready to take the risk.

A half century later, Armstrong has passed (at 82 from complication of cardiac surgery)  but Aldrin is still writing books and proposing plans to reach Mars. Their time in space may well have changed their lives and views of the world, but it did not seem to affect their basic health.

But the two were in space for only eight days and so were not exposed to the long-term effects of solar radiation, microgravity and isolation that are now under intense study.  Because the next generation of astronauts who may be going to the moon and beyond will be going for much longer periods of time and so will face a wide range of potential problems that weren’t considered major issues in Apollo or even later days.

Much has been learned since Apollo, however, and some of it raises new risks and new problems.  And that’s why the just-released Twin Study of the health comparison of long-staying International Space Station astronaut Scott Kelly and his ground-based twin brother Mark Kelly has been eagerly awaited.

Now that we know somewhat better what to look for in terms of more subtle damage that can come from long stays in space, what are the dangers and how serious are they?

Identical twins, Scott and Mark Kelly, are the subjects of NASA’s Twins Study. Scott (left) spent a year in space while Mark (right) stayed on Earth as a control subject.  It was Scott Kelly’s idea to have he and his (former astronaut) brother serve as subjects of the extensive research into the effects of space travel on the human body. (NASA)

“Given that the majority of the biological and human health variables remained stable, or returned to baseline, after a 340-dayspace mission, these data suggest that human health can be mostly sustained over this duration of spaceflight,”  the study concludes.

Published in Science, the intensive study was led by Francine E.… Read more

A Significant Advance: Primitive Earth Life Survives an 18-Month Exposure to Mars-Like Conditions in Space

The European Space Agency’s BIOMEX array, outside the Russian Zvezda module of the ISS. (ESA)

The question of whether simple life can survive in space is hardly new, but it has lately taken on a new urgency.

It is not only a pressing scientific question — might life from Mars or another body have seeded life on Earth?  Might organisms similar to extreme Earth life survive Mars-like conditions? — but it is also has some very practical implications.  If humans are going to some day land and live on the moon or on Mars, they will need to grow food to survive.

So the question is pretty basic:  can Earth seeds or dormant life survive a long journey to deep space and can they then  grow in the protected but still extreme radiation, temperature, and vacuum  of deep space?

It was with these questions in mind that the European Space Agency funded a proposal from the German Institute of Planetary Research to send samples of a broad range of simple to more complex life to the International Space Station in 2014, and to expose the samples to extreme conditions outside the station.

Some of the findings have been reported earlier,  but last month the full results of the Biomex tests (Biology on Mars Experiment) were unveiled in the journal Astrobiology.

And the answer is that many, though certainly not all, of the the samples of snow and permafrost algae, cyanobacteria, archaea, fungi, biofilms, moss and lichens in the  did survive their 533 days of living dangerous in their dormant states.  When brought back to Earth and returned to normal conditions, they returned to active life.

“For the majority of the chosen organisms, it was the first and the longest time they ever were exposed to space and Mars-like conditions,” Jean-Pierre Paul de Vera, principal investigator of the effort, wrote to me.  And the results were promising.

 

For the BIOMEX experiment, on 18 August 2014, Russian cosmonauts Alexander Skvortsov and Oleg Artemyev placed several hundred samples in an experiment container on the exterior of the Zvezda’Russian ISS module. The containers, open to the surrounding space environment, held primitive terrestrial organisms such as mosses, lichens, fungi, bacteria, archaea and algae, as well as cell membranes and pigments.

 

A microbiologist and planetary researcher at the German Space Agency’s Institute of Planetary Research in Berlin, de Vera and his team went from Antarctica to the parched Atacama desert in Chile, from the high Alps to the steppe highlands of central Spain to find terrestrial life surviving in extreme conditions (extremophiles.)

The samples were then placed in regolith (soil, dust and other rocky materials) simulated to be as close as possible to what is found on Mars.Read more

Ancient Mars Water. Ever More of It, and Flowing Ever Longer on the Surface

A photo of a preserved river channel on Mars with color overlaid to show different elevations (blue is low, yellow is high).
(Courtesy of NASA/JPL/Univ. Arizona/Univ. Chicago)

 

Rather like a swollen river overflowing its banks, the story of water on Mars keeps on rising and spreading in quite unpredictable ways.

While the planet is now inarguable parched — though with lots of polar and subsurface ice and, perhaps, some seasonal surface trickles — data from the Curiosity rover, the Mars Reconnaissance Orbiter and other missions have proven quite reliably that the planet was once much wetter and warmer.  But how much wetter, and for how long,  remains of subject of hot debate.

On one side, Mars climate modelers have struggled to find mechanisms to keep the planet wetter and warmer for more than it’s earliest period — perhaps 500 million years.  Their projections flow from the seemingly established conclusion that Mars lost much of its atmosphere by 3.5 billion years ago, and without that protection warmer and wetter appear to be impossible.

But the morphology of the planet, the gorges, the fossil lakes, the riverbeds and deltas that are visible  because of 21st century technology and missions,  appears to tell a different and more wide-ranging story of Mars water.

 

Mudstone at the “Kimberley” formation on Mars taken by NASA’s Curiosity rover. The strata in the foreground dip towards the base of Mount Sharp, indicating the ancient depression that existed before the larger bulk of the mountain formed.
Credit:NASA/JPL-Caltech/MSSS

And now, in one of the most expansive interpretations of the Martian water story, University of Chicago planetary scientist and Mars expert Edwin Kite and colleagues report in a Science Advances paper that the planet not only once had many, many lakes and rivers, but that they were filled as part of a water cycle involving precipitation, rather than primarily through the sporadic melting of primordial ice as a result of incoming meteorites or other astrophysical events.

What’s more, they write, the rivers continued to sporadically flow well past the time when the Martian surface has been assumed to be dead dry.

The era when Mars has been most often described as going from wet-to-dry is around 3.5 billion years ago, but their interpretation of when precipitation-filled rivers stopped running is about 3 billion years ago.  In other words, Kite’s team now says the rivers ran — often quite actively — for more than one billion years.… Read more

Japan’s Hayabusa2 Asteroid Mission Reveals a Remarkable New World

The Hayabusa2 touchdown movie, taken on February 22, 2019 (JST) when Hayabusa2 first touched down on asteroid Ryugu to collect a sample from the surface. It was captured using the onboard small monitor camera (CAM-H). The video playback speed is five times faster than actual time (JAXA).

On March 5 the Japan Aerospace Exploration Agency (JAXA) released the extraordinary video shown above. The sequence of 233 images shows a spacecraft descending to collect material from the surface of an asteroid, before rising amidst fragments of ejected debris. It is an event that has never been captured on camera before.

The images were taken by a camera onboard the Hayabusa2 spacecraft, a mission to explore a C-type asteroid known as “Ryugu” and bring a sample back to Earth.

C-type asteroids are a class of space rock that is thought to contain carbonaceous material and undergone little evolution since the early days of the Solar System. These asteroids may have rained down on the early Earth and delivered our oceans and possibly our first organics. Examination of the structure of Ryugu and its composition compared to Earth will help us understand how planets can become habitable.

Asteroid Ryugu from an altitude of 6km
Asteroid Ryugu from an altitude of 6km. Image was captured with the Optical Navigation Camera – Telescopic (ONC-T) on July 20, 2018 at around 16:00 JST. (JAXA, University of Tokyo, Kochi University, Rikkyo University, Nagoya University, Chiba Institute of Technology, Meiji University, University of Aizu, AIST.)

Hayabusa2 arrived at asteroid Ryugu on June 27, 2018. The spacecraft spent the summer examining the asteroid with a suite of onboard instruments. Despite being a tiny world at only 1km across, Hayabusa2 spotted different seasons on Ryugu. Like the Earth, the asteroid’s rotation axis is inclined so that different levels of sunlight reach the northern and southern hemispheres.

It also rotated upside down, spinning in the opposite sense to the Earth and its own path around the Sun. This is likely indicative of a violent past, a view supported by the heavily bouldered and cratered surface. This rugged terrain presented the Hayabusa2 team with a problem: where could they land?

After a summer of observations, Hayabusa2 had been planning three different operations on the asteroid surface. The first was the deployment of two little rovers known as the MINERVA-II1. The second was the release of a shoebox-sized laboratory known as MASCOT, designed by the German and French space agencies.… Read more

« Older posts

© 2019 Many Worlds

Theme by Anders NorenUp ↑