Tag: virtual reality

Standing on an Asteroid: Could the Future of Research and Education be Virtual Reality?

Scenes from the virtual reality talk on Hayabusa2 with students from the Yokohama International School. Each student has a robot avatar they can use to look around the scene, talk with other people and interact with objects. (OmniScope)

Have you ever wondered what it would be like to stand on an asteroid? A rugged terrain of boulders and craters beneath your feed, while the airless sky above you opens onto the star-spangled blackness of space.

It sounds like the opening scene for a science fiction movie. But this month, I met with students on the surface of an asteroid, all without leaving my living room.

The solution to this riddle —as you probably guessed from the title of this article— is virtual reality.

Virtual reality (or VR) allows you to enter a simulated environment. Unlike an image or even a video, VR allows you to look in all directions, move freely and interact with objects to create an immersive experience. An appropriate analogy would be to imagine yourself imported into a computer game.

It is therefore perhaps not surprise that a major application for VR has been the gaming industry. However, interest has recently grown in educational, research and training applications.

Discussing the Hayabusa2 mission in virtual reality. We began with a talk using slides and then went on to examine the spacecraft. (OmniScope)

The current global pandemic has forced everyone to seek online alternatives for their classes, business meetings and social interactions. But even before this year, the need for alternatives to in-person gatherings was increasing. International conferences are expensive on both the wallet and environment, and susceptible to political friction, all of which undermine the goal of sharing ideas within a field. Meanwhile, experiences such as planetariums and museums are limited in reach to people within comfortable traveling distance.

Standard solutions have included web broadcasts of talks, or interactive meetings via platforms such as Zoom or Google hangouts. But these fail to capture the atmosphere of post-talk discussions that are as productive in a conference as the talks themselves. Similarly, you cannot talk to people individually without arranging a separate meeting.

Virtual reality offers an alternative that is closer to the experience of in-person gatherings, and where disadvantages are off-set with opportunities impossible in a regular meeting.

Imagine teaching a class on the solar system, where you could move your classroom from the baked surface of Mercury, to the sulphuric clouds of Venus and onto the icy moons of Jupiter.… Read more

On The Frontier Of The Hunt For Signs Of Life On Early Earth And Ancient Mars

The vigorously debated finding from the Isua greenstone or supercrustal belt, a 1,200-square-mile area of ancient rocks in Greenland.  Proponents say the rises, from .4 to 1.6 inches tall, are  biosignatures of bacteria and sediment mounds that made up stromatolites almost 3.8 billion years ago.  Critics say additional testing has shown they are the result of non-biological forces.  (Nature and Nutman et al.)

Seldom does one rock outcrop get so many visitors in a day, especially when that outcrop is located in rugged, frigid terrain abutting the Greenland Ice Sheet and can be reached only by helicopter.

But this has been a specimen of great importance and notoriety since it appeared from beneath the snow pack some eight years ago. That’s when it was first identified by two startled geologists as something very different from what they had seen in four decades of scouring the geologically revelatory region – the gnarled Isua supercrustal belt – for fossil signs of very early life.

Since that discovery the rock outcrop has been featured in a top journal and later throughout the world as potentially containing the earliest signature of life on Earth – the outlines of half inch to almost two inch-high stromatolite structures between 3.7 and 3.8 billion years old.

The Isua greenstone, or supracrustal belt contains some of the oldest known rocks and outcrops in the world, and is about 100 miles northeast of the capital, Nuuk.

If Earth could support the life needed to form primitive but hardly uncomplicated stromatolites that close to the initial cooling of the planet, then the emergence of life might not be so excruciatingly complex after all. Maybe if the conditions are at all conducive for life on a planet (early Mars comes quickly to mind) then life will probably appear.

Extraordinary claims in science, however, require extraordinary proof, and inevitably other scientists will want to test the claims.

Within two years of that initial ancient stromatolite splash in a Nature paper (led by veteran geologist Allen Nutman of the University of Wollongong in Australia), the same journal published a study that disputed many of the key observations and conclusions of the once-hailed ancient stromatolite discovery.  The paper concluded the outcrop had no signs of early life at all.

Debates and disputes are common in geology as the samples get older,  and especially in high profile science with important implications.  In this case, the implications of what is in the rocks reach into the solar system and the cosmos. … Read more

© 2023 Many Worlds

Theme by Anders NorenUp ↑