Tag: Mars (page 1 of 3)

What Happened to All That Water on Ancient Mars? A New Theory With a Surprising Answer

How did Mars lose the surface water that was plentiful on its surface 3 to 4 billion years ago?  New research says it did not leave the planet but rather was incorporated on a molecular level into Martian minerals.  (NASA)

Once it became clear in the past decade that the surface of ancient Mars, the inevitable question arose regarding what happened to it all since the planet is today so very dry.  And the widely-accepted answer has been that the water escaped into space, especially after the once thicker atmosphere of Mars was stripped away.

But NASA-funded research just made public has a new and bold and very different answer:  Much of the water that formed rivers, lakes and deep oceans on Mars, the research concludes, sank below the planet’s surface and is trapped inside minerals in the planet’s rocky crust.

Since early Mars is now thought to have had as much surface water as half of the the Earth’s Atlantic Ocean — enough to cover most of Mars in at least 100 meters of water — that means huge volumes of water became incorporated into the molecular structure of clays, sulfates, carbonates, opals and other hydrated minerals.

While some of the early water surely disappeared from Mars via atmospheric escape, the new findings, published in the latest issue of Science, conclude that atmospheric loss can not account for much or most of its water loss — especially now that estimates of how much water once existed on the surface of the planet have increased substantially.

“Atmospheric escape doesn’t fully explain the data that we have for how much water actually once existed on Mars,” said Eva Scheller, lead author and a doctoral candidate at the California Institute of Technology.  The rate of water loss was found to be too slow to explain what happened.

Scheller and others at Caltech set out to find other explanations. Based on modeling and data collected by Mars orbiters, rovers and from meteorites, they concluded that between 30 and 99 percent of that very early Martian surface water can now be found trapped in the minerals of the planet’s crust.

Mars mudstone, as imaged by the Curiosity rover.  (NASA/JPL-Caltech)

As described in a release for NASA’s Jet Propulsion Laboratory, the team studied the quantity of water on Mars over time in all its forms (vapor, liquid, and ice) and the chemical composition of the planet’s current atmosphere and crust through the analysis of meteorites as well as using data provided by Mars rovers and orbiters. … Read more

NASA’s Perseverance Rover Lands on Mars — The Third Martian Arrival in a Week

This true-color Mars globe includes Terra Meridiani, the region where NASA’s Opportunity rover explored from 2004 to 2018.  Two more Mars rovers — one from NASA and the other from China — are scheduled to land this week and then later in the year. (NASA/Greg Shirah)

Mars is receiving visitors these days.  Quite a few of them.

The most prominent visitor is NASA’s Perseverance rover,  which made a difficult but smooth precision landing at 3.55 ET  this afternoon.

The rover now sits in Jezero Crater, in an area that clearly once had lots of water flowing.   The site was selected, in part, because the Perseverance rover’s official mission includes — for the first time since the mid 1970s — an effort to find signs of long ago life.

Perseverance will join the Curiosity rover on Mars, that pioneering machine that has revolutionized our understanding of the planet since it landed in 2012  The Curiosity and Perseverance rovers are similar in design but carry different instruments with different goals.

A key difference:  Curiosity was tasked with determining whether Mars had once been habitable and found that it definitely had been, with flowing rivers, large lakes and necessary-for-life organic compounds.  Perseverance will take another scientific step forward and search for signs that Mars actually was once inhabited.

Perseverance also joins China’s Tianwen-1 (“heavenly questions”) probe,  which went into orbit around Mars last week.  It is the first Chinese spacecraft to arrive at Mars, and later this spring or summer the Chinese space agency will attempt to land a rover as well on the planet’s northern plains..

And then there’s the Hope spacecraft which entered into Mars orbit last week as well.  Launched by the United Arab Emirates, it was placed in a wide orbit so it could study the planet’s weather and climate systems, which means it also can see the full planet in one view.

These spacecraft will join several others on or orbiting Mars, making this by far the busiest time ever for exploration of Mars — a real milestone.

NASA’s Perseverance rover will land in Jezero Crater. This image was produced using instruments on NASA’s Mars Reconnaissance Orbiter, which helps identify potential landing sites for future missions. On ancient Mars, water carved channels and transported sediments to form fans and deltas within lake basins, as is clearly visible at here at Jezaro Crater (NASA/JPL-Caltech/ASU)

That the Perseverance mission has a formal goal of searching for ancient signs of life is a big deal, and involves a lot of history.… Read more

The Faint Young Sun Paradox and Mars

This NASA image of Mars at sunset taken by the Spirit  rover, evokes the conditions on early Mars when the planet received only 70 percent of the of the solar energy that it does now.  (NASA/JPL/Texas A&M/Cornell)

When our sun was young, it was significantly less luminous and sent out significantly less warming energy than it does now.  Scientists estimate that 4 million years ago, when the sun and our solar system were 500 million years old, the energy that the sun produced and dispersed was about 75 percent of what it is today.

The paradox arises because during this time of the faint young sun Earth had liquid water on its surface and — as has been conclusively proven in recent years — so did Mars, which is 61 million miles further into space.  However difficult it is to explain the faint young sun problem as it relates to early Earth, it is far more difficult to explain for far more frigid Mars.

Yet many have tried.  And because the data is both limited and innately puzzling, the subject has been vigorously debated from a variety of different perspectives.  In 2018, the journal Nature Geoscience published an editorial on the state of that dispute titled “Mars at War.”

There are numerous point of (strenuous) disagreement, with the main ones involving whether early Mars was significantly more wet and warm than previously inferred, or whether it was essentially cold and arid with only brief interludes of warming.  The differences in interpretation also require different models for how the warming occurred.

Was there a greenhouse warming  effect produced by heat-retaining molecules in the atmosphere?  Was long-term volcanic activity the cause? Or perhaps meteor strikes?  Or heat from the interior of the planet?

All of these explanations are plausible and all may have played a role.  But that begs the question that has so energized Mars scientists since Mars orbiters and the Curiosity rover conclusively proved that surface water created early rivers and valley networks, lakes and perhaps an ocean.  To solve the “faint young sun” paradox as it played out on Mars,  a climate driver (or drivers) that produces significant amounts of heat is required.

Could the necessary warming be the result of radioactive elements in the Martian crust and mantle that decay and give off impressive amounts of heat when they do?

A team led by Lujendra Ojha, an assistant professor at Rutgers University, proposes in Science Advances that may well be the answer, or at least part of the answer.… Read more

Sample Return in the Time of Coronavirus

 

Sample return from Mars. Artist rendering of a Mars sample return mission. The mission would use robotic systems and a Mars ascent rocket to collect and send samples of Martian rocks, soils and atmosphere to Earth for detailed chemical and physical analysis.  No rocket has ever taken off from Mars and this NASA and European Space Agency (ESA) project is in early planning stages. Still, blue-ribbon science panels have recommended efforts to begin preparing the public for an eventual Mars sample return. ( Wickman Spacecraft & Propulsion)

For space scientists of all stripes, few goals are as crucial as bringing pieces of Mars, of asteroids, of other planets and moons back to Earth for the kind of intensive study only possible here.  Space missions can, and have, told us many truths about the solar system,  but having a piece of Mars or Europa or an asteroid to study in a lab on Earth is considered the gold standard for learning about the actual composition of other bodies, their histories and whether they could — or once did — harbor life.

In keeping with this ambition, the last National Research Council Decadal Survey listed a Mars “sample return” as the top science priority for large Flagship missions.  And the Perseverance rover that NASA is scheduled to send to Mars next month will — among many other tasks — identify compelling rock samples, collect and cache them so a subsequent mission can pick them up and fly them to Earth.

Two asteroid sample return missions are also in progress, the NASA’s OSIRIS-REx mission to Bennu and the Japan Aerospace Exploration Agency (JAXA’s)  Hayabusa2 mission to the Ryugu.  Both spacecraft are at or have already left their intended targets now and are expected to return with rock samples later this decade, with Hayabusa2 scheduled to complete its round trip later this year.

An illustration of the coronavirus. (Centers of Disease Control)

So sample return is in our future.  And in the case of Mars the samples will not with 100 percent certainty be lifeless — a major difference from the samples brought back from the moon during the Apollo missions and the samples coming from asteroids.

This possibility of a spacecraft bringing back something biological — as in the 1969 book “The Andromeda Strain” — has always been viewed as a very low probability but high risk hazard, and much thinking has already gone into how to bring samples back safely.… Read more

Theorized Northern Ocean of Mars; now long gone.  (NASA)

Change is the one constant in our world– moving in ways tiny and enormous,  constructive and destructive.

We’re living now in a time when a rampaging pandemic circles the globe and when the climate is changing in so many worrisome and potentially devastating ways.

With these ominous  changes as a backdrop, it is perhaps useful to spend a moment with change as it happens in a natural world without humans.  And just how complete that change can be:

For years now, planetary scientists have debated whether Mars once had a large ocean across its northern hemisphere.

There certainly isn’t one now — the north of Mars is parched, frigid and largely featureless.  The hemisphere was largely covered over in a later epoch by a deep bed of lava, hiding signs of its past.

The northern lowlands of Mars, as photographed by the Viking 2 lander. The spacecraft landed in the Utopia Planitia section of northern Mars in 1976. (NASA/JPL)

Because our sun sent out significantly less warmth at the time of early Mars (4.2-3.5  billion years ago,) climate modelers have long struggled to come up with an explanation for how the planet — on average, 137 million miles further out than Earth — could have been anything but profoundly colder than today. And if that world was so unrelentingly frigid, how could there be a surface ocean of liquid water?

But discoveries in the 21st century have strongly supported the long-ago presence of water on a Mars in the form of river valleys, lakes and a water cycle to feed them.  The work done by the Curiosity rover and Mars-orbiting satellites has made this abundantly clear.

An ocean in the northern lowlands is one proposal made to explain how the water cycle was fed.

And now, In a new paper in Journal of Geophysical Research: Planets,  scientists from Japan and the United States have presented modelling and analysis describing how and why Mars had to have a large ocean early in its history to produce the geological landscape that is being found.

Lead author Ramses Ramirez, a planetary scientist with the Earth-Life Science Institute in Tokyo, said it was not possible to determine how long the ocean persisted, but their team concluded that it had to be present  in that early period around 4 billion to 3.5 billion years ago.  That is roughly when what are now known to be river valleys were cut in the planet’s southern highlands.… Read more

How Long Were the Wet Periods on Early Mars, and Was That Water Chemically Suitable For Life?

 

An artist rendering, based on scientific findings, of Gale Crater in Mars during one of its ancient, wet periods. (NASA)

There is no doubt that early Mars had long period of warmer and much wetter climates before its atmosphere thinned too much to retain that liquid H20 on the surface.

As we know from the Curiosity mission to Gale Crater and other orbital findings, regions of that warmer and wetter Mars had flowing water and lakes periodically over hundreds of millions of years.  That’s one of the great findings of planetary science of our times.

But before approaching the question of whether that water could have supported life, a lot more needs to be known than that water was present.  We need answers to questions like how acidic or basic that water likely was?  Was it very salty? Did it have mineral and elemental contents that could provide energy to support any potential life?

And most especially, how long did those wet periods last, and the dry periods as well?

In a recent paper for Nature Communications, some more precise answers are put forward based on data collected at Gale Crater and interpreted based on geochemical modeling and Earth-based environmental science.

The water, say geochemist Yasuhito Sekine of the Earth-Life Science Institute (ELSI) in Tokyo and colleagues from the U.S. and Japan, had many important characteristics supportive of life.  It was only mildly salty, it had a near-neutral pH, it contained essential minerals and elements in state of disequilibrium — meaning that they could give and receive the electrons needed to provide life-supporting energy.   The  area was hardly lush — more like the semi-arid regions of Central Asia and Utah’s Great Salt Lake — but it contained water that was plausibly life supporting.

Based on an analysis of the patterns and quantities of salt remains, they estimate the water was present numerous times for between 10,000 to one million years each period.

Were those warm eras long enough for life to emerge, and the dry period short enough for it to survive?

“We don’t have a clear answer,” Sekine said. “But it is now more clear that the key question is which is more important:  the chemistry of the water or the duration of its presence?”

And the way to address the question, he said, is through a mix of planetary science and environmental science.

“This is a first step in the application of environmental chemistry to Mars,” Sekine said.… Read more

PIXL: A New NASA Instrument For Ferreting Out Clues of Ancient Life on Mars

 

Extremely high definition images of the com ponents of rocks and mud as taken by PIXL, the Planetary Instrument for X-ray Lithochemistry .   On the Mars 2020 rover, PIXL  will have significantly greater capabilities than previous similar instruments sent to Mars.  Rather than reporting bulk compositions averaged over several square centimeters, it will identify precisely where in the rock each element resides. With spatial resolution of about 300 micrometers, PIXL will conduct the first ever petrology investigations on Mars, correlating elemental compositions with visible rock textures . (NASA)J

The search for life, or signs of past life beyond Earth is now a central issue in space science, is central to the mission of NASA, and is actually a potentially breakthrough discovery in the making  for humanity.    The scientific stakes could hardly be higher.

But identifying evidence of ancient microbial life – and refuting all reasonable non-biological explanations for that evidence — is stunningly difficult.

As recent wrangling over Earth’s oldest rocks in Greenland has shown, determining the provenance of a deep-time biosignature even here on Earth is extraordinarily difficult. In 2016, scientists reported discovery of 3,700 million yr-old stromatolites in the Isua geological area of Greenland.

Just three years later, a field workshop held at the Isua discovery site brought experts from around the world to examine the intriguing structures and see whether the evidence cleared the very high bar needed to accept a biological interpretation. While the scientists who published the initial discovery held their ground, not one of the other scientists felt convinced by the evidence before them.  Watching and listening as the different scientists presented their cases was a tutorial in the innumerable factors involved in coming to any conclusion.

Now think about trying to wrestle with similar or more complex issues on Mars, of how scientists can reach of level of confidence to report that a sign (or hint) of past life has apparently been found.

As it turns out, the woman who led the Greenland expedition — Abigail Allwood of NASA’s Jet Propulsion Lab — is also one of the key players in the upcoming effort to find biosignatures on Mars.  She is the principal investigator of the Planetary Instrument for X-ray Lithochemistry (PIXL) that will sit on the extendable arm of the rover, and it has capabilities to see in detail the composition of Mars samples as never before.

The instrument has, of course, been rigorously tested to understand what it can and cannot do. … Read more

If Bacteria Could Talk

 

Hawaiian lava cave microbial mats appear to have the highest levels and diversity of genes related to quorum sensing so far.  (Stuart Donachie, University of Hawai`i at Mānoa)

Did you know that many bacteria — some of the oldest lifeforms on Earth — can talk?  Really.

And not only between the same kind of single-cell bacteria, but  back and forth with members of other species, too.

Okay, they don’t talk in words or with sounds at all.  But they definitely communicate in a meaningful and essential way, especially in the microbial mats and biofilms (microbes attached to surfaces surrounded by mucus) that constitute their microbial “cities.”

Their “words” are conveyed via chemical signaling molecules — a chemical language — going from one organism to another,  and are a means to control when genes in the bacterial DNA are turned “on” or “off.”  The messages can then be translated into behaviors to protect or enhance the larger (as in often much, much larger) group.

Called “quorum sensing,” this microbial communication was first identified several decades ago.  While the field remains more characterized by questions than definitive answers, is it clearly growing and has attracted attention in medicine, in microbiology and in more abstract computational and robotics work.

Most recently,  it has been put forward as chemically-induced behavior that can help scientists understand how bacteria living in extreme environments on Earth — and potential on Mars —  survive and even prosper.  And the key finding is that bacteria are most successful when they form communities of microbial mats and biofilms, often with different species of bacteria specializing in particular survival capabilities.

Speaking at the recent Astrobiology Science Conference in Seattle,  Rebecca Prescott, a National Science Foundation  Postdoctoral Research Fellow in Biology said this community activity may make populations of bacteria much more hardy than otherwise might be predicted.

 

Quorum sensing requires a community. Isolated Bacteria (and Archaea) have nobody to communicate with and so genes that are activated by quorum sensing are not turned “on.”

“To help us understand where microbial life may occur on Mars or other planets, past or present, we must understand how microbial communities evolve and function in extreme environments as a group, rather than single species,” said Prescott,

“Quorum sensing gives us a peek into the interactive world of bacteria and how cooperation may be key to survival in harsh environments,” she said.

Rebecca Prescott  is a National Science Foundation Postdoctoral Fellow in Biology (1711856) and is working with principal investigator Alan Decho of the University of South Carolina on a NASA Exobiology Program grant.

Read more

Curiosity Rover as Seen From High Above by Mars Orbiter

A camera on board NASA’s Mars Reconnaissance Orbiter recently spotted the Curiosity rover in Gale Crater.  The image is color-enhanced to allow surface features to become more visible. (NASA/JPL-Caltech)

This is Apollo memory month, when the 50th anniversary arrives of the first landing of astronauts on the moon.  It was a very big deal and certainly deserves attention and applause.

But there’s something unsettling about the anniversary as well, a sense that the human exploration side of NASA’s mission has disappointed and that its best days were many decades ago.   After all, it has been quite a few years now since NASA has been able to even get an astronaut to the International Space Station without riding in a Russian capsule.

There have been wondrous (and brave) NASA human missions since Apollo — the several trips to the Hubble Space Telescope for emergency repair and upgrade come to mind — but many people who equate NASA with human space exploration are understandably dismayed.

This Many Worlds column does not focus on human space exploration, but rather on the science coming from space telescopes, solar system missions, and the search for life beyond Earth.

And as I have argued before, the period that following the last Apollo mission and began with the 1976 Viking landings on Mars has been — and continues to be — the golden era of space science.

This image of Curiosity,  which is now exploring an area that has been named Woodland Bay in Gale Crater, helps make the case.

Taken on May 31 by the HiRISE camera of NASA’s Mars Reconnaissance Orbiter (MRO), it shows the rover in a geological formation that holds remains of ancient clay.  This is important because clay can be hospitable to life, and Curiosity has already proven that Mars once had the water, organic compounds and early climate to support life.

The MRO orbits between 150 and 200 miles above Mars, so this detailed image is quite a feat.

The arm of the Curiosity rover examines the once-watery remains at Woodland Bay, Gale Crater. (NASA/JPL-Caltech)

Curiosity landed on Mars for what was planned as a mission of two years-plus. That was seven years ago this coming August.

The rover has had some ups and downs and has moved more slowly than planned, but it remains in motion — collecting paradigm-shifting information, drilling into the Mars surface, taking glorious images and making its way up the slopes of Gale Crater. … Read more

Methane on Mars. Here Today, Gone Tomorrow

On the 2,440th Martian day at Gale Crater, the Curiosity rover detected a large spike in the presence of the gas methane. It was by far the largest plume detected by the rover, and parallels an earlier ground-based discovery of an even larger plume of the gas.  (NASA, JPL-Caltech, MSSS)

The presence — and absence — of methane gas on Mars has been both very intriguing and very confusing for years.  And news coming out last week and then on Monday adds to this scientific mystery.

To the great surprise of the Curiosity rover team, their Sample Analysis on Mars instrument sent back a measurement of 21 parts per billion of methane on Thursday — by far the highest measurement since the rover landed at Gale Crater.

As Paul Mahaffy, principal investigator of the instrument that made the measurement, described it yesterday at a large astrobiology conference in Seattle, “We were dumbfounded.”

And then a few days later, all the methane was gone.   Mahaffy, and NASA headquarters, reported that the readings went down quickly to below 1 part per billion.

These perplexing findings are especially important because methane could — and also could not — be a byproduct of biology.  On Earth, more than 90 percent of methane is produced via biology.  On Mars — at this point, nobody knows.  But the question has certainly gotten scientists’ attention.

The most recent finding of a return to low methane levels suggests that last week’s methane detection was one of the transient methane plumes that have been observed in the past. While Curiosity scientists have noted background levels rise and fall seasonally, they haven’t found a pattern in the occurrence of these transient plumes.

“The methane mystery continues,” said Ashwin Vasavada, Curiosity’s project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California. “We’re more motivated than ever to keep measuring and put our brains together to figure out how methane behaves in the Martian atmosphere.”

This image was taken by the left Navcam on the Curiosity Mars rover on June 18, 2019, the day when a methane plume was detected.  It shows part of “Teal Ridge,” which the rover has been studying within a region called the “clay-bearing unit.” (NASA/JPL-Caltech)

The nature and size of this most recent methane plume will, by chance, be the most widely observed so far.

That’s because the Mars Express orbiter happened to be performing spot tracking observations at the Gale Crater right around the time Curiosity detected the methane spike. … Read more

« Older posts

© 2021 Many Worlds

Theme by Anders NorenUp ↑