Tag: Mars (page 1 of 4)

China’s Presence in Space Grows and So Do Its Accomplishments

The Chinese Mars lander, with photo taken by the Zhurong rover after it rolled down onto the surface of Mars. (Chinese National Space Administration)

These are heady days for the Chinese space program.

On the heels of a successful 2019 mission to the dark side of the moon and the launch of the core of an ambitious low Earth orbit space station,  the Chinese National Space Administration has done what only NASA has accomplished before — landing a rover on Mars and then setting it into motion on the surface of the planet.

The Zhurong rover, which is named after an ancient fire god in Chinese mythology, rolled off its lander on Saturday and has begun its planned three-month mission.

The rover carries instruments to study the planet’s surface rocks and atmosphere using radar, spectroscopy and a magnetic field detector. It will also look for signs of life, including any subsurface water or ice.

The solar-powered, 530-pound and  six-wheeled robot will be exploring Utopia Planitia in Mars’ northern hemisphere – the general area where NASA’s Viking 2 lander touched down in 1975.  Zhurong will join NASA’s much larger (more than 2,200 pound) Perseverance and Curiosity rovers now operating on Mars.

“We hope we can get a comprehensive covering of Martian topography, landform and environment, and the exploratory data of the radar detecting the Martian subsurface during one Martian year,” said deputy chief commander of the mission, Zhang Yuhua.

“By doing so, our country will have our own abundant and first-hand data about Martian resources,” she said.

The Chinese Mars lander is powered by solar panels and is expected to explore for at least three months.  (Rendering by the Chinese National Space Administration)

While the rover will itself not bring many new technologies and approaches to Mars science, the architecture of the mission is unprecedented.  The Tianwen-1 spacecraft that brought the rover to Mars orbited the planet for more than three months before deploying the lander and rover.  Part of the spacecraft will remain in orbit as a communications hub.

All NASA missions have flown directly to the surface without first going into orbit around Mars.

While the Utopia Planitia region was explored to some extent by Viking 2, much more is known about the region now then was known in the 1970s.

The plains are part of the northern lowlands of Mars, and some theorize that the region was once covered by a great “Northern Ocean.”  Read more

Novel Sights and Sounds on Mars

 

The helicopter Ingenuity has now flown three times on Mars and has proven itself to be a dependable (for now) and potentially ground-breaking addition to Mars science.

Ingenuity, brought to Mars as part of the Perseverance rover landing, took off early Sunday morning on its third and most ambitious Martian mission yet.  The 4-pound helicopter traveled a total of 330 feet laterally, stayed aloft for 80 seconds and reached a maximum speed of about 4.5 mph, handily breaking marks set on its previous two flights.

In the video above, you can see the helicopter taking off on the bottom left, crossing the screen, and then coming back a bit later to land in the same spot.

The “flight was what we planned for, and yet it was nothing short of amazing,” said Dave Lavery, the Ingenuity program executive at NASA Headquarters. “With this flight, we are demonstrating critical capabilities that will enable the addition of an aerial dimension to future Mars missions.”

If this capacity proves to be robust it will clearly have many positive implications for Mars science with successor rotorcraft — allowing scientists to quickly study areas surrounding a rover and to put their discoveries into larger geological contexts.

Ingenuity rover preparing to go airborne. The wings, legs and more were folded up for its long ride to Mars and then robotically unfurled on the Martian surface. (NASA)

The Mastcam-Z imager aboard NASA’s Perseverance Mars rover, which is parked at “Van Zyl Overlook” and serving as a communications base station, captured video of Ingenuity.

The Ingenuity team has been pushing the helicopter’s limits by adding instructions to capture more photos of its own – including from the color camera, which captured its first images on the second flight. As with everything else about these flights, the additional steps are meant to provide insights that could be used by future aerial missions.

The helicopter’s black-and-white navigation camera, meanwhile, tracks surface features below, and this flight put the onboard processing of these images to the test. Ingenuity’s flight computer, which autonomously flies the craft based on instructions sent up hours before data is received back on Earth, utilizes the same resources as the cameras.

If Ingenuity flies too fast, the flight algorithm can’t track surface features.

On Earth, NASA sought to simulate those conditions in NASA’s Jet Propulsion Lab vacuum chambers, which were filled with wispy air consisting primarily of carbon dioxide. … Read more

The Hows and Whys of Mars Sample Return

Combining two images, this mosaic shows a close-up view of the rock target named “Yeehgo” taken by the SuperCam instrument on NASA’s Perseverance rover on Mars. To be compatible with the rover’s software, “Yeehgo” is an alternative spelling of “Yéigo,” the Navajo word for diligent.
(NASA/JPL-Caltech/LANL/CNES/CNRS/ASU/MSSS)

One of the fondest dreams and top priorities of space science for years has been  to bring a piece of Mars back to Earth to study in the kind of depth possible only in a cutting-edge laboratory.

While the instruments on Mars rovers can tell us a lot,  returning a sample to study here on Earth is seen as the  way to ultimately tease out the deepest secrets of the composition of Mars, its geological and geochemical history and possibly the presence of life, life fossils or of the precursor molecules  of life.

But bringing such a sample to Earth is extraordinarily difficult.  Unlike solar system bodies that have been sampled back on Earth — the moon, a comet and some asteroids — Mars has the remains of an atmosphere.  That means any samples would have to lift off in a rocket brought to Mars and with some significant propulsive power, a task that so far has been a technical bridge too far.

That is changing now and the Mars Sample Return mission has begun.  The landing of the Perseverance rover in Jezero Crater on Mars signaled that commencement and the rover will be used to identify, drill into and collect intriguing bits of Mars.  This is a long-term project, with the best case scenario seeing those Mars samples arriving on Earth in a decade.  So this entirely unprecedented, high-stakes campaign will be playing out for a long time.

“I think that Mars scientists would like to return as much sample as possible,” said Lindsay Hays, NASA Mars Sample Return deputy program scientist.  “Being able to return samples that we collected with purpose is how we take the next step in our exploration of Mars.”

“And it seems that there are still so many unknowns, even in our solar system, even with the planets right next door, that every time we do something new, we answer a couple of questions that we hoped to and but also find a whole bunch of new things that we never expected.”

“I am so excited to see what comes of this adventure.  And I think that is a feeling shared by Mars scientists and planetary scientists broadly.”… Read more

What Happened to All That Water on Ancient Mars? A New Theory With a Surprising Answer

How did Mars lose the surface water that was plentiful on its surface 3 to 4 billion years ago?  New research says it did not leave the planet but rather was incorporated on a molecular level into Martian minerals.  (NASA)

Once it became clear in the past decade that the surface of ancient Mars, the inevitable question arose regarding what happened to it all since the planet is today so very dry.  And the widely-accepted answer has been that the water escaped into space, especially after the once thicker atmosphere of Mars was stripped away.

But NASA-funded research just made public has a new and bold and very different answer:  Much of the water that formed rivers, lakes and deep oceans on Mars, the research concludes, sank below the planet’s surface and is trapped inside minerals in the planet’s rocky crust.

Since early Mars is now thought to have had as much surface water as half of the the Earth’s Atlantic Ocean — enough to cover most of Mars in at least 100 meters of water — that means huge volumes of water became incorporated into the molecular structure of clays, sulfates, carbonates, opals and other hydrated minerals.

While some of the early water surely disappeared from Mars via atmospheric escape, the new findings, published in the latest issue of Science, conclude that atmospheric loss can not account for much or most of its water loss — especially now that estimates of how much water once existed on the surface of the planet have increased substantially.

“Atmospheric escape doesn’t fully explain the data that we have for how much water actually once existed on Mars,” said Eva Scheller, lead author and a doctoral candidate at the California Institute of Technology.  The rate of water loss was found to be too slow to explain what happened.

Scheller and others at Caltech set out to find other explanations. Based on modeling and data collected by Mars orbiters, rovers and from meteorites, they concluded that between 30 and 99 percent of that very early Martian surface water can now be found trapped in the minerals of the planet’s crust.

Mars mudstone, as imaged by the Curiosity rover.  (NASA/JPL-Caltech)

As described in a release for NASA’s Jet Propulsion Laboratory, the team studied the quantity of water on Mars over time in all its forms (vapor, liquid, and ice) and the chemical composition of the planet’s current atmosphere and crust through the analysis of meteorites as well as using data provided by Mars rovers and orbiters. … Read more

NASA’s Perseverance Rover Lands on Mars — The Third Martian Arrival in a Week

This true-color Mars globe includes Terra Meridiani, the region where NASA’s Opportunity rover explored from 2004 to 2018.  Two more Mars rovers — one from NASA and the other from China — are scheduled to land this week and then later in the year. (NASA/Greg Shirah)

Mars is receiving visitors these days.  Quite a few of them.

The most prominent visitor is NASA’s Perseverance rover,  which made a difficult but smooth precision landing at 3.55 ET  this afternoon.

The rover now sits in Jezero Crater, in an area that clearly once had lots of water flowing.   The site was selected, in part, because the Perseverance rover’s official mission includes — for the first time since the mid 1970s — an effort to find signs of long ago life.

Perseverance will join the Curiosity rover on Mars, that pioneering machine that has revolutionized our understanding of the planet since it landed in 2012  The Curiosity and Perseverance rovers are similar in design but carry different instruments with different goals.

A key difference:  Curiosity was tasked with determining whether Mars had once been habitable and found that it definitely had been, with flowing rivers, large lakes and necessary-for-life organic compounds.  Perseverance will take another scientific step forward and search for signs that Mars actually was once inhabited.

Perseverance also joins China’s Tianwen-1 (“heavenly questions”) probe,  which went into orbit around Mars last week.  It is the first Chinese spacecraft to arrive at Mars, and later this spring or summer the Chinese space agency will attempt to land a rover as well on the planet’s northern plains..

And then there’s the Hope spacecraft which entered into Mars orbit last week as well.  Launched by the United Arab Emirates, it was placed in a wide orbit so it could study the planet’s weather and climate systems, which means it also can see the full planet in one view.

These spacecraft will join several others on or orbiting Mars, making this by far the busiest time ever for exploration of Mars — a real milestone.

NASA’s Perseverance rover will land in Jezero Crater. This image was produced using instruments on NASA’s Mars Reconnaissance Orbiter, which helps identify potential landing sites for future missions. On ancient Mars, water carved channels and transported sediments to form fans and deltas within lake basins, as is clearly visible at here at Jezaro Crater (NASA/JPL-Caltech/ASU)

That the Perseverance mission has a formal goal of searching for ancient signs of life is a big deal, and involves a lot of history.… Read more

The Faint Young Sun Paradox and Mars

This NASA image of Mars at sunset taken by the Spirit  rover, evokes the conditions on early Mars when the planet received only 70 percent of the of the solar energy that it does now.  (NASA/JPL/Texas A&M/Cornell)

When our sun was young, it was significantly less luminous and sent out significantly less warming energy than it does now.  Scientists estimate that 4 million years ago, when the sun and our solar system were 500 million years old, the energy that the sun produced and dispersed was about 75 percent of what it is today.

The paradox arises because during this time of the faint young sun Earth had liquid water on its surface and — as has been conclusively proven in recent years — so did Mars, which is 61 million miles further into space.  However difficult it is to explain the faint young sun problem as it relates to early Earth, it is far more difficult to explain for far more frigid Mars.

Yet many have tried.  And because the data is both limited and innately puzzling, the subject has been vigorously debated from a variety of different perspectives.  In 2018, the journal Nature Geoscience published an editorial on the state of that dispute titled “Mars at War.”

There are numerous point of (strenuous) disagreement, with the main ones involving whether early Mars was significantly more wet and warm than previously inferred, or whether it was essentially cold and arid with only brief interludes of warming.  The differences in interpretation also require different models for how the warming occurred.

Was there a greenhouse warming  effect produced by heat-retaining molecules in the atmosphere?  Was long-term volcanic activity the cause? Or perhaps meteor strikes?  Or heat from the interior of the planet?

All of these explanations are plausible and all may have played a role.  But that begs the question that has so energized Mars scientists since Mars orbiters and the Curiosity rover conclusively proved that surface water created early rivers and valley networks, lakes and perhaps an ocean.  To solve the “faint young sun” paradox as it played out on Mars,  a climate driver (or drivers) that produces significant amounts of heat is required.

Could the necessary warming be the result of radioactive elements in the Martian crust and mantle that decay and give off impressive amounts of heat when they do?

A team led by Lujendra Ojha, an assistant professor at Rutgers University, proposes in Science Advances that may well be the answer, or at least part of the answer.… Read more

Sample Return in the Time of Coronavirus

 

Sample return from Mars. Artist rendering of a Mars sample return mission. The mission would use robotic systems and a Mars ascent rocket to collect and send samples of Martian rocks, soils and atmosphere to Earth for detailed chemical and physical analysis.  No rocket has ever taken off from Mars and this NASA and European Space Agency (ESA) project is in early planning stages. Still, blue-ribbon science panels have recommended efforts to begin preparing the public for an eventual Mars sample return. ( Wickman Spacecraft & Propulsion)

For space scientists of all stripes, few goals are as crucial as bringing pieces of Mars, of asteroids, of other planets and moons back to Earth for the kind of intensive study only possible here.  Space missions can, and have, told us many truths about the solar system,  but having a piece of Mars or Europa or an asteroid to study in a lab on Earth is considered the gold standard for learning about the actual composition of other bodies, their histories and whether they could — or once did — harbor life.

In keeping with this ambition, the last National Research Council Decadal Survey listed a Mars “sample return” as the top science priority for large Flagship missions.  And the Perseverance rover that NASA is scheduled to send to Mars next month will — among many other tasks — identify compelling rock samples, collect and cache them so a subsequent mission can pick them up and fly them to Earth.

Two asteroid sample return missions are also in progress, the NASA’s OSIRIS-REx mission to Bennu and the Japan Aerospace Exploration Agency (JAXA’s)  Hayabusa2 mission to the Ryugu.  Both spacecraft are at or have already left their intended targets now and are expected to return with rock samples later this decade, with Hayabusa2 scheduled to complete its round trip later this year.

An illustration of the coronavirus. (Centers of Disease Control)

So sample return is in our future.  And in the case of Mars the samples will not with 100 percent certainty be lifeless — a major difference from the samples brought back from the moon during the Apollo missions and the samples coming from asteroids.

This possibility of a spacecraft bringing back something biological — as in the 1969 book “The Andromeda Strain” — has always been viewed as a very low probability but high risk hazard, and much thinking has already gone into how to bring samples back safely.… Read more

Theorized Northern Ocean of Mars; now long gone.  (NASA)

Change is the one constant in our world– moving in ways tiny and enormous,  constructive and destructive.

We’re living now in a time when a rampaging pandemic circles the globe and when the climate is changing in so many worrisome and potentially devastating ways.

With these ominous  changes as a backdrop, it is perhaps useful to spend a moment with change as it happens in a natural world without humans.  And just how complete that change can be:

For years now, planetary scientists have debated whether Mars once had a large ocean across its northern hemisphere.

There certainly isn’t one now — the north of Mars is parched, frigid and largely featureless.  The hemisphere was largely covered over in a later epoch by a deep bed of lava, hiding signs of its past.

The northern lowlands of Mars, as photographed by the Viking 2 lander. The spacecraft landed in the Utopia Planitia section of northern Mars in 1976. (NASA/JPL)

Because our sun sent out significantly less warmth at the time of early Mars (4.2-3.5  billion years ago,) climate modelers have long struggled to come up with an explanation for how the planet — on average, 137 million miles further out than Earth — could have been anything but profoundly colder than today. And if that world was so unrelentingly frigid, how could there be a surface ocean of liquid water?

But discoveries in the 21st century have strongly supported the long-ago presence of water on a Mars in the form of river valleys, lakes and a water cycle to feed them.  The work done by the Curiosity rover and Mars-orbiting satellites has made this abundantly clear.

An ocean in the northern lowlands is one proposal made to explain how the water cycle was fed.

And now, In a new paper in Journal of Geophysical Research: Planets,  scientists from Japan and the United States have presented modelling and analysis describing how and why Mars had to have a large ocean early in its history to produce the geological landscape that is being found.

Lead author Ramses Ramirez, a planetary scientist with the Earth-Life Science Institute in Tokyo, said it was not possible to determine how long the ocean persisted, but their team concluded that it had to be present  in that early period around 4 billion to 3.5 billion years ago.  That is roughly when what are now known to be river valleys were cut in the planet’s southern highlands.… Read more

How Long Were the Wet Periods on Early Mars, and Was That Water Chemically Suitable For Life?

 

An artist rendering, based on scientific findings, of Gale Crater in Mars during one of its ancient, wet periods. (NASA)

There is no doubt that early Mars had long period of warmer and much wetter climates before its atmosphere thinned too much to retain that liquid H20 on the surface.

As we know from the Curiosity mission to Gale Crater and other orbital findings, regions of that warmer and wetter Mars had flowing water and lakes periodically over hundreds of millions of years.  That’s one of the great findings of planetary science of our times.

But before approaching the question of whether that water could have supported life, a lot more needs to be known than that water was present.  We need answers to questions like how acidic or basic that water likely was?  Was it very salty? Did it have mineral and elemental contents that could provide energy to support any potential life?

And most especially, how long did those wet periods last, and the dry periods as well?

In a recent paper for Nature Communications, some more precise answers are put forward based on data collected at Gale Crater and interpreted based on geochemical modeling and Earth-based environmental science.

The water, say geochemist Yasuhito Sekine of the Earth-Life Science Institute (ELSI) in Tokyo and colleagues from the U.S. and Japan, had many important characteristics supportive of life.  It was only mildly salty, it had a near-neutral pH, it contained essential minerals and elements in state of disequilibrium — meaning that they could give and receive the electrons needed to provide life-supporting energy.   The  area was hardly lush — more like the semi-arid regions of Central Asia and Utah’s Great Salt Lake — but it contained water that was plausibly life supporting.

Based on an analysis of the patterns and quantities of salt remains, they estimate the water was present numerous times for between 10,000 to one million years each period.

Were those warm eras long enough for life to emerge, and the dry period short enough for it to survive?

“We don’t have a clear answer,” Sekine said. “But it is now more clear that the key question is which is more important:  the chemistry of the water or the duration of its presence?”

And the way to address the question, he said, is through a mix of planetary science and environmental science.

“This is a first step in the application of environmental chemistry to Mars,” Sekine said.… Read more

PIXL: A New NASA Instrument For Ferreting Out Clues of Ancient Life on Mars

 

Extremely high definition images of the com ponents of rocks and mud as taken by PIXL, the Planetary Instrument for X-ray Lithochemistry .   On the Mars 2020 rover, PIXL  will have significantly greater capabilities than previous similar instruments sent to Mars.  Rather than reporting bulk compositions averaged over several square centimeters, it will identify precisely where in the rock each element resides. With spatial resolution of about 300 micrometers, PIXL will conduct the first ever petrology investigations on Mars, correlating elemental compositions with visible rock textures . (NASA)J

The search for life, or signs of past life beyond Earth is now a central issue in space science, is central to the mission of NASA, and is actually a potentially breakthrough discovery in the making  for humanity.    The scientific stakes could hardly be higher.

But identifying evidence of ancient microbial life – and refuting all reasonable non-biological explanations for that evidence — is stunningly difficult.

As recent wrangling over Earth’s oldest rocks in Greenland has shown, determining the provenance of a deep-time biosignature even here on Earth is extraordinarily difficult. In 2016, scientists reported discovery of 3,700 million yr-old stromatolites in the Isua geological area of Greenland.

Just three years later, a field workshop held at the Isua discovery site brought experts from around the world to examine the intriguing structures and see whether the evidence cleared the very high bar needed to accept a biological interpretation. While the scientists who published the initial discovery held their ground, not one of the other scientists felt convinced by the evidence before them.  Watching and listening as the different scientists presented their cases was a tutorial in the innumerable factors involved in coming to any conclusion.

Now think about trying to wrestle with similar or more complex issues on Mars, of how scientists can reach of level of confidence to report that a sign (or hint) of past life has apparently been found.

As it turns out, the woman who led the Greenland expedition — Abigail Allwood of NASA’s Jet Propulsion Lab — is also one of the key players in the upcoming effort to find biosignatures on Mars.  She is the principal investigator of the Planetary Instrument for X-ray Lithochemistry (PIXL) that will sit on the extendable arm of the rover, and it has capabilities to see in detail the composition of Mars samples as never before.

The instrument has, of course, been rigorously tested to understand what it can and cannot do. … Read more

« Older posts

© 2021 Many Worlds

Theme by Anders NorenUp ↑