Tag: Venus

Searching for the Edge of Habitability

Topographical map of Venus by NASA’s Magellan spacecraft (1990 – 1994). Color indicates height. (NASA/JPL/USGS)

How many habitable worlds like our own could exist around other stars? Since the discovery of the first exoplanets, the answer to this question has seemed tantalizingly close. But to estimate the number of Earths, we first need to understand how our planet could have gone catastrophically awry.

In other words, we need to return to Venus.

We have now discovered over 4000 planets beyond our solar system. Approximately one-third of these worlds are Earth-sized and likely to have rocky surfaces not crushed under deep atmospheres. The next step is to discover how many of these support temperate landscapes versus ones unsuitable for life.

The Earth’s habitability is often ascribed to the level of sunlight we receive. We orbit in the so-called ‘habitable zone’ where our planet’s geological cycle can adjust the level of carbon dioxide in our atmosphere to keep our seas liquid. In a closer orbit to the sun, this cycle could not operate fast enough to keep the Earth cool. Our seas would evaporate and our atmosphere fill with carbon dioxide, sending the planet temperature into an upwards spiral known as a runaway greenhouse.

If our solar system had just one Earth-sized planet, this would suggest we could simply count-up similar sized planets in the habitable zones around other stars. This would then be our set of the most likely habitable worlds.

However, this idea is shredded in a new paper posted this month to be published in the Journal of Geophysical Research: Planets. Led by Stephen Kane from the University of California, Riverside, the paper is authored by many of the top planetary scientists we have met before in this column.

Their message is simple: our sun is orbited by two Earth-sized planets but only one is habitable. To identify habitable planets around other stars, we need to explain why the Earth and Venus evolved so differently. And the data suggests this is not just a climate catastrophe.

Orbiting beyond the inner edge of the habitable zone, Venus does appear at first to be a runaway Earth. The planet’s atmosphere is 96.5% carbon dioxide, smothering the surface to escalate temperatures to a staggering 863°F (462°C). Images from NASA’s Pioneer Venus mission in the late 1970s revealed a surface of highlands and lowlands that resembled the continents of Earth. This is all consistent with a picture of an Earth-like planet with a runaway greenhouse atmosphere.… Read more

The Gale Winds of Venus Suggest How Locked Exoplanets Could Escape a Fate of Extreme Heat and Brutal Cold

Two images of the nightside of Venus captured by the IR2 camera on the Akatsuki orbiter in September 2016 (JAXA).

 

More than two decades before the first exoplanet was discovered, an experiment was performed using a moving flame and liquid mercury that could hold the key to habitability on tidally locked worlds.

The paper was published in a 1969 edition of the international journal, Science, by researchers Schubert and Whitehead. The pair reported that when a Bunsen flame was rotated beneath a cylindrical container of mercury, the liquid began to flow around the container in the opposite direction at speeds up to four times greater than the rotation of the flame. The scientists speculated that such a phenomenon might explain the rapid winds on Venus.

On the Earth, the warm equator and cool poles set up a pressure difference that creates our global winds. These winds are deflected westward by the rotation of the planet (the so-called Coriolis force) promoting a zonal (east-west) air flow around the globe. But what would happen if our planet’s rotation slowed? Would our winds just cycle north and south between the equator and poles?

The Moon is tidally locked to the Earth, so only one hemisphere is visible from our planet (Smurrayinchester / wikipedia commons).

Such a slow-rotating scenario may be the lot of almost all rocky exoplanets discovered to date. Planets such as the TRAPPIST-1 system and Proxima Centauri-b all orbit much closer to their star than Mercury, making their faint presence easier to detect but likely resulting in tidal lock. Like the moon orbiting the Earth, planets in tidal lock have one side permanently facing the star, creating a day that is equal to the planet’s year.

The dim stars orbited by these planets can mean they receive a similar level of radiation as the Earth, placing them within the so-called “habitable zone.” However, tidal lock comes with the risk of horrific atmospheric collapse. On the planet side perpetually facing away from the star, temperatures can drop low enough to freeze an Earth-like atmosphere. The air from the dayside would then rush around the planet to fill the void, freezing in turn and causing the planet to lose its atmosphere even within the habitable zone.

The only way this could be prevented is if winds circulating around the planet could redistribute the heat sufficiently to prevent freeze-out. But without a strong Coriolis force from the planet’s rotation, can such winds exist?… Read more

What Would Happen If Mars And Venus Swapped Places?

Venus, Earth and Mars (ESA).

 

What would happen if you switched the orbits of Mars and Venus? Would our solar system have more habitable worlds?

It was a question raised at the “Comparative Climatology of Terrestrial Planets III”; a meeting held in Houston at the end of August. It brought together scientists from disciplines that included astronomers, climate science, geophysics and biology to build a picture of what affects the environment on rocky worlds in our solar system and far beyond.

The question regarding Venus and Mars was proposed as a gedankenexperiment or “thought experiment”; a favorite of Albert Einstein to conceptually understand a topic. Dropping such a problem before the interdisciplinary group in Houston was meat before lions: the elements of this question were about to be ripped apart.

The Earth’s orbit is sandwiched between that of Venus and Mars, with Venus orbiting closer to the sun and Mars orbiting further out. While both our neighbors are rocky worlds, neither are top picks for holiday destinations.

Mars has a mass of just one-tenth that of Earth, with a thin atmosphere that is being stripped by the solar wind; a stream of high energy particles that flows from the sun. Without a significant blanket of gases to trap heat, temperatures on the Martian surface average at -80°F (-60°C). Notably, Mars orbits within the boundaries of the classical habitable zone (where an Earth-like planet could maintain surface water)  but the tiny planet is not able to regulate its temperature as well as the Earth might in the same location.

 

The classical habitable zone around our sun marks where an Earth-like planet could support liquid water on the surface (Cornell University).

 

Unlike Mars, Venus has nearly the same mass as the Earth. However, the planet is suffocated by a thick atmosphere consisting principally of carbon dioxide. The heat-trapping abilities of these gases soar surface temperatures to above a lead-melting 860°F (460°C).

But what if we could switch the orbits of these planets to put Mars on a warmer path and Venus on a cooler one? Would we find that we were no longer the only habitable world in the solar system?

“Modern Mars at Venus’s orbit would be fairly toasty by Earth standards,” suggests Chris Colose, a climate scientist based at the NASA Goddard Institute for Space Studies and who proposed the topic for discussion.

Dragging the current Mars into Venus’s orbit would increase the amount of sunlight hitting the red planet.… Read more

To Understand Habitability, We Need to Return to Venus


This image shows the night side of Venus in thermal infrared. It is a false-color image using data from the Japanese spacecraft Akatsuki’s IR2 camera in two wavelengths, 1.74 and 2.26 microns. Darker regions denote thicker clouds, but changes in color can also denote differences in cloud particle size or composition from place to place.  JAXA / ISAS / DARTS / Damia Bouic

“You can feel what it’s like on Venus here on Earth,” said Kevin McGouldrick from the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder. “Heat a hot plate until it glows red, place your palm on its surface and then run over that hand with a truck.”

The surface of Venus is a hellish place. Suffocated by a thick atmosphere, pressure on the Venusian surface is 92 times greater than on the surface of Earth. Temperatures sit at a staggering 863°F (462°C), which is sufficient to melt lead.

The longest a spacecraft has survived in these conditions is a mere 127 minutes; a record set by the Russian Venera 13 mission over 35 years ago.

As the brightest planet in the night sky, Venus allured ancient astronomers into naming the world after the Roman mythological goddess of love and beauty. This now seems an ironic choice, but the contrast between distant observation and surface conditions produces an apt juxtaposition for exoplanets.

The comparison has led to an article in Nature Geoscience by McGouldrick and a nine author white paper advising on astrobiology strategy for the National Science Foundation. The conclusion of both publications echoes the irony of Venus’s name: we need to return to the inferno of Venus to understand habitable worlds.

A portion of western Eistla Regio is displayed in this three-dimensional perspective view of the surface of Venus. Synthetic aperture radar data from the spacecraft Magellan is combined with radar altimetry to develop a three-dimensional map of the surface. Rays cast in a computer intersect the surface to create a three-dimensional perspective view.  The simulated hues are based on color images recorded by the Soviet Venera 13 and 14 spacecraft. The image, a frame from a video released in 1991, was produced at NASA’s JPL Multimission Image Processing Laboratory.

In the last 25 years, scientists have discovered over 3,500 extrasolar planets. The vast majority of these worlds have not been imaged directly, but are detected by tiny influences on their host star.… Read more

Red Dwarf Stars and the Planets Around Them

Artist rendering of a red dwarf or M star, with three exoplanets orbiting. About 75 percent of all stars in the sky are the cooler, smaller red dwarfs. (NASA)

It’s tempting to look for habitable planets around red dwarf stars, which put out far less luminosity and so are less blinding.  But is it wise?

That question has been near the top of the list for many exoplanet scientists, especially those involved in the search for habitable worlds.

Red dwarfs are plentiful (about three-quarters of all the stars out there) and the planets orbiting them are easier to observe because the stars are so small compared to our Sun and so an Earth-sized planet blocks a greater fraction of starlight.  Because planets orbiting red dwarfs are much closer in to their host stars, the observing geometry favors detecting more transits.

A potentially rich target, but with some drawbacks that have become better understood in recent years.  Not only are most planets orbiting these red dwarf stars tidally locked, with one side always facing the sun and the other in darkness, but the life history of red dwarfs is problematic.  They start out with powerful flares that many scientists say would sterilize the close-in planets forever.

Also, they are theorized to be prone to losing whatever water remains even if the stellar flares don’t do it. Originally, it was thought that this would happen because of a “runaway greenhouse,” where a warming planet under a brightening star would evaporate enough water from its oceans to create a thick blanket of H2O vapor at high altitudes and block the escape of radiation, leading to further warming and the eventual loss of all the planet’s water.

The parching CO2 greenhouse of a planet like Venus may be the result of that.  Later it was realized that on many planets, another mechanism called the “moist greenhouse” might create a similar thick blanket of water vapor at high altitudes long before a planet ever got to the runaway greenhouse stage.

Finally now has come some better news about red dwarf exoplanets.  Using 3-D models that characterize atmospheres going back, forward and to the sides, researchers found atmospheric conditions quite different from those predicted by 1-D models that capture changes only going from the surface straight up.

One paper found that using some pretty simple observations and calculations, scientists could determine the bottom line likelihood of whether or not the planet would be undone by a moist greenhouse effect. … Read more

© 2019 Many Worlds

Theme by Anders NorenUp ↑