Tag: NASA (page 1 of 7)

The Juno Spacecraft Images Jupiter’s Moon Europa as it Speeds Past

The first image from NASA’s Juno spacecraft as it passed close by Europa as part of its extended mission.  (NASA)

For NASA to extend its space science missions well past their original lifetime in space has become such a commonplace that it is barely noticed.

The Curiosity rover was scheduled to last on Mars for two years but now it has been going for a decade — following the pace set by earlier, smaller Mars rovers.  The Cassini mission to Saturn was extended seven years beyond it’s original end date and nobody expected that Voyager 1, launched in 1977,  would still flying out into deep space and sending back data 45 years later.

The newest addition to this virtuous collection of over-achievers is the Juno spacecraft, which arrived at Jupiter in 2016.  Its prime mission in and around Jupiter ended last year and then was extended until 2025, or beyond.

And now we have some new and intriguing images of Jupiter’s moon Europa thanks to Juno and its extension.

Traveling at a brisk 14.7 miles per second, Juno passed within 219 miles of the surface of the icy moon on Thursday and images from the flyby were released today (Friday.)  That gave the spacecraft only a two-hour window to collect data and images, but scientists are excited.

“It’s very early in the process, but by all indications Juno’s flyby of Europa was a great success,” said Scott Bolton, Juno principal investigator from Southwest Research Institute in San Antonio, in a NASA release.

“This first picture is just a glimpse of the remarkable new science to come from Juno’s entire suite of instruments and sensors that acquired data as we skimmed over the moon’s icy crust.”

Candy Hansen, a Juno co-investigator who leads planning for the Juno camera at the Planetary Science Institute in Tucson, called the released images “stunning.”

“The science team will be comparing the full set of images obtained by Juno with images from previous missions, looking to see if Europa’s surface features have changed over the past two decades,” she said.

An image of Europa taken by the Galileo spacecraft as it passed the moon in 1998. (NASA/JPL-Caltech)

During the flyby, the mission collected what will be some of the highest-resolution images of the moon (0.6 miles per pixel) taken so far and obtained valuable data on Europa’s ice shell structure, interior, surface composition, and ionosphere, in addition to the moon’s interaction with Jupiter’s magnetosphere.… Read more

Spacecraft Smashes Into A Near-Earth Asteroid in the First Major Test of NASA’s Planetary Defense Program

The asteroid moon Didymous just before the Dart spacecraft crashed into it. (NASA)

As a test of our ability to damage a potentially hazardous asteroid heading our way, or perhaps to give it enough of a push that the asteroid’s path is changed enough to render it harmless, a NASA spacecraft tonight successfully collided with an asteroid some 6.8 mllion miles away.

The Dart spacecraft – short for Double Asteroid Redirection Test – crashed at high speed into the asteroid Dimorphos and self-destructed yesterday evening.

It was unclear yesterday exactly how much damage was sustained by the asteroid, which is the size of a football stadium. But images taken aboard the 1,200-pound spacecraft showed that it got closer and closer to the asteroid and then the camera froze — presumably on impact.

The spacecraft was going at 14,000 miles-an-hour and hit the moon of a gravitationally-bound pair of near-Earth asteroids.

Asteroid 65803 Didymos is a binary near-Earth asteroid. The primary body has a diameter of around a half mile and a rotation period of 2.26 hours, whereas the Didymoon secondary body has a diameter of around 525 feet and rotates around the primary at a distance of around 9 miles from the primary surface in around 12 hours. (ESA)

With that impact, the orbit of Dimorphos around the larger asteroid is expected to be slightly altered, resulting in a change in the direction of the two asteroids.

While cameras and telescopes watched the crash, it will take days or even weeks to find out if it actually altered the asteroid’s orbit.

To calculate how much the moon’s orbit is altered over time it’s ‘light curve’ will be measured by observing the sunlight reflected from it with telescopes on the ground, and using this to calculate the change in the orbital period of the double-asteroid system. Satellites in orbit, including the Hubble and James Webb space telescopes will also join the effort.

This was the first  full-scale planetary defense test by the NASA, with others on the way.  Dart was launched in November, 2021.

Planetary defense experts have not found any decent-sized asteroids likely to head our way for at least a  century and likely much longer. But they also report that as many as 15,000 smaller, undetected asteroids are in the near-Earth region and their potential paths are not known.

This is part of the logic behind the planetary defense program:  The risks of an asteroid of any size hitting the Earth are extremely small, but they are not well defined and, of course, a large asteroid crash on Earth could be cataclysmic. 

Read more

The Virtual Planetary Lab and Its Search for What Makes an Exoplanet Habitable, or Even Inhabited

As presented by the Virtual Planetary Laboratory, exoplanet habitability is a function of the interplay of processes between the planet, the planetary system, and host star.  These interactions govern the planet’s evolutionary trajectory, and have a larger and more diverse impact on a planet’s habitability than its position in a habitable zone. (Meadows and Barnes)

For more than two decades now, the Virtual Planetary Laboratory (VPL) at the University of Washington in Seattle has been at the forefront of the crucial and ever-challenging effort to model how scientists can determine whether a particular exoplanet is capable of supporting life or perhaps even had life on it already.

To do this, VPL scientists have developed or combined models from many disciplines that characterize and predict a wide range of planetary, solar system and stellar attributes that could identify habitability, or could pretty conclusively say that a planet is not habitable.

These include the well known questions of whether water might be present and if so whether temperatures would allow it to be sometimes in a liquid state, but on to questions involving whether an atmosphere is present, what elements and compounds might be in the atmospheres, the possible orbital evolution of the planet, the composition of the host star and how it interacts with a particular orbiting planet and much, much more, as shown in the graphic above.

This is work that has played a significant role in advancing astrobiology — the search for life beyond Earth.

More specifically, the VPL approach played a considerable part in building a body of science that ultimately led the Astro2020 Decadal Study of the National Academy of Sciences to recommend last year that the NASA develop its  first Flagship astrobiology project — a mission that will feature a huge space telescope able to study exoplanets for signs of biology in entirely new detail.  That mission, approved but not really defined yet, is not expected to launch until the 2040s.

With that plan actually beginning to move forward, the 132 VPL affiliated researchers at 28 institutions find themselves at another more current-day inflection point:  The long-awaited James Webb Space Telescope has begun to collect and send back what will be a massive and unprecedented set of spectra  of chemicals from the atmospheres of distant planets.

The Virtual Planetary Laboratory has modeled the workings of exoplanets since 2001, looking for ways to predict planetary conditions based on a broad range of measurable factors.

Read more

The James Webb Space Telescope Begins Looking at Exoplanets

 

Artist rendering of Gliese (GJ) 436 b  is a Neptune-sized planet that orbits a red dwarf  star.  Red dwarfs are cooler, smaller, and less luminous than the Sun. The planet completes one full orbit around its parent star in just a little over 2 days. It is made, scientists say, of extremely hot ice.  (NASA/JPL-Caltech/UCF)

The James Webb Space Telescope has begun the part of its mission to study the atmospheres of 70 exoplanets in ways, and at a depth, well beyond anything done so far.

The telescope is not likely to answer questions like whether there is life on distant planet — its infrared wavelengths will tell us about the presence of many chemicals in exoplanet atmospheres but little about the presence of the element most important to life on Earth, oxygen.

But it is nonetheless undertaking a broad study of many well-known exoplanets and is likely to produce many tantalizing results and suggest answers to central questions about exoplanets and their solar systems.

Many Worlds has earlier looked at the JWST “early release” program, under which groups are allocated user time on the telescope under the condition that they make their data public quickly.  That way other teams can understand better how JWST works and what might be possible.

Another program gives time to scientists who worked on the JWST mission and on its many instruments.  They are given guaranteed time as part of their work making JWST as innovative and capable as it is.

One of the scientist in this “guaranteed time observations program” is Thomas Greene, an astrophysicist at NASA Ames Research Center.  The groups he leads have been given 215 hours of observing time for this first year (or more) of Cycle 1 of JWST due to his many contributions to the JWST mission as well as his history of accomplishments.

In a conversation with Greene, I got a good sense of what he hopes to find and his delight at the opportunity.  After all, he said, he has worked on the JWST idea and then mission since 1997.

“We will be observing a diverse sample of exoplanets to understand more about them and their characteristics,” Greene said.  “Our goal is to get a better understanding of how exoplanets are similar to and different from those in our solar system.”

And the JWST spectra will tell them about the chemistry, the composition and the thermal conditions on those exoplanets, leading to insights into how they formed, diversified and evolved into planets often so unlike our own.Read more

Icy Moons, And Exploring The Secrets They Hold

Voyager 2’s flew by the Uranian moon Miranda in 1986 and the spacecraft spent 17 minutes taking  photos to make this high-resolution portrait.  Miranda has three oval and trapezoid coronae, tectonic features whose origins remain debated. (NASA / JPL / Ted Stryk)

When it come to habitable environments in our solar system, there’s Earth, perhaps Mars billions of years ago and then a slew of ice-covered moons that are likely to have global oceans under their crusts.  Many of you are familiar with Europa (a moon of Jupiter) and Enceladus (a moon of Saturn) — which have either been explored by NASA or will be in the years ahead.

But there quite a few others icy moons that scientists find intriguing and just possibly habitable.  There is Ganymede,  the largest moon of Jupiter and larger than Mercury but only 40 percent as dense, strongly suggesting a vast supply of water inside rather than rock.

There’s Saturn’s moon Titan, which is known for its methane lakes and seas on the surface but which has a subterranean ocean as well.  There is Callisto, the second largest moon of Jupiter and an subsurface-ocean candidates and even Pluto and Ceres, now called dwarf planets that show signs of having interior oceans.

And of increasing interest are several of the icy moons of Uranus, particularly Ariel and Miranda.  Each has features consistent with a subsurface ocean and even geological activity.  Although Uranus is a distant planet, well past Jupiter and Saturn and would take more than a decade to just get there, the possibility of a future Uranus mission is becoming increasingly real.

The National Academy of Sciences (NAS) Decadal Survey for planetary science rated a Uranus mission as the highest priority in the field, and just today (Aug. 18) NASA embraced the concept.

At a NASA Planetary Science Division town hall meeting, Director Lori Glaze said the agency was “very excited” about the Uranus mission recommendation from the National Academy and that she hoped and expected some studies could be funded and begun in fiscal 2024.

If a Uranus mission is fully embraced,  it would be the first ever specifically to an ice giant system — exploring the planet and its moons.  This heightened interest reflects the fact that many in the exoplanet field now hold that ice giant systems are the most common in the galaxy and that icy moons may well be common as well.… Read more

Despite Everything, American-Russian Relations on the International Space Station Appear To Be Solid

The International Space Station, which orbits 248 miles above Earth,  in what is called low-Earth orbit. Its long success as an international collaboration has been tested by the Ukraine war. (NASA)

Late last month, it appeared that Russian participation in the International Space Station would end in 2024 — or so seemed to say the head of the Russian space agency, Roscosmos  Thirty years of unusual and successful cooperation would be coming to a close as the Ukraine war appeared to make longer-term commitments impossible, or undesirable for the Russian side.

But on a day when the Ukraine war raged for its 163rd day, when new Western sanctions were being put into place, when a Russian judge gave WNBA star Brittney Griner a provocative 9-year prison term for carrying small amounts of cannabis oil as she left Moscow, and just a short time after what seemed to be the Russian announcement of that 2024 departure,  NASA officials held a commodious press conference with Roscosmos Executive Director for Human Space Programs Sergei Krikalev and others involved with the ISS.

Together they spoke yesterday (August 4) of expanding American-Russian cooperation on the mission and discounted talk of a 2024 Russian exit.

“We always talk of spaceflight as being team support,” said Kathy Lueders, NASA’s associate administrator of NASA’s Space Operations, which oversees the ISS. “And this news conference will exemplify how it is a team sport.”

She then discussed  how and why a Russian cosmonaut would soon take a SpaceX flight to the ISS as part of a new program under which Russian cosmonauts and American astronauts can fly on each other’s ISS-and-homeward-bound spacecraft.  The flight by veteran cosmonaut Anna Kikina will mark the first time a Russian has flown on an American spacecraft.

In the press conference, Krikalev then insisted that Russia had no intention of leaving the station in 2024 but rather would begin looking at the logistics of departing at that time — with an eye to leaving for their own planned space station in the years ahead.

“As far as the statement for 2024, perhaps something was lost in translation,” he said. “The statement actually said Russia will not pull out until after 2024.  That may be in 2025, 2028 or 2030.”   He said the timetable “will depend on the technical condition of the station.”

In the good-natured spirit of the press conference, Krikalev said that he was “happy to see so many faces I’ve known for many years.” 

Read more

Evolving Views of Our Heliosphere Home

Does this model show of the actual shape of the heliosphere, with lines of magnetic fields around it? New research suggests so. The size and shape of the magnetic “force field” that protects our solar system from deadly cosmic rays has long been debated by astrophysicists. (Merav Opher, et. al)

We can’t see the heliosphere.  We know where it starts but not really where it ends.  And we are pretty certain that most stars, and therefore most planetary systems, are bounded by heliospheres, or “astropheres,” as well.

It has a measurable physical presence, but it is always changing.  And although it is hardly well known, it plays a substantial role in the dynamics of our solar system and our lives.

As it is studied further and deeper, it has become apparent that the heliosphere might be important — maybe even essential – for the existence of life on Earth and anywhere else it may exist.  Often likened to an enormous bubble or cocoon, it is the protected space in which our solar system and more exists.

Despite the fact that it is the largest physical system in the entire solar system, the heliosphere was only discovered at the dawn of the space age in the late 1950’s, when it was theorized by University of Chicago physicist Eugene Parker as being the result of what he termed the solar wind.

It took another decade for satellite measurements to confirm its existence and to determine some of its properties — that it is made up of an endless supply of charged particles that are shot off the sun — too hot to form into atoms. Together these particles,  which are superimposed with the interplanetary magnetic field, constitute the ingredients of he heliosphere.

Just as the Earth’s magnetic fields protect us from some of the effects of the Sun’s hazardous emanations, the heliosphere protects everything inside its bubble from many, though not all, of the incoming and more hazardous high-energy cosmic rays headed our way.

As measurable proof that the heliosphere does offer significant protection, when the Voyager 1 spacecraft left the heliosphere in 2012 and entered the intersellar medium, instruments onboard detected a tripling of amount of cosmic radiation suddenly hitting the spacecraft.

A comet-shaped traditional view of the structure of the heliosphere, with the sun in the middle of the circle, planets orbiting around and the solar wind trailing as the Sun orbits the Milky Way.  

Read more

NASA’s Perseverance Rover on Mars; an Update

 

The composite images of “Delta Scarp” in Jezero Crater reveal that billions of years ago, when Mars had an atmosphere thick enough to support water flowing across its surface, Jezero’s fan-shaped river delta apparently experienced a late-stage flooding events that carried rocks and debris into it from the highlands well outside the crater. (RMI: NASA/JPL-Caltech/LANL/CNES/CNRS/ASU/MSSS).

NASA’s Perseverance rover has been on Mars for fifteen months now and is about to begin its trek into the fossil delta of Jezero Crater.  It’s a big deal for the mission, because the delta is where water once flowed long enough and strongly enough to smooth, round and move large rocks.

Since proof of the long-ago presence of water means the area was potentially habitable — especially a delta that spreads out into what were once calm rivulets — this is where the astrobiology goals of the mission come to the fore.

Or so the Perseverance team thought it would play out.

But the big surprise of the mission so far has been that the rover landed on igneous rock, formed in the Martian interior, spewed out and crystalized and solidified on the surface.

That Perseverance would land on igneous rock was always seen as a possibility, but a more likely outcome was landing on sedimentary rock as in  Gale Crater, where the Curiosity rover continues its decade-long explore. Sedimentary rock is laid down in layers in the presence of water.

Perseverance takes a selfie in Jezero. The rover is a twin of the Curiosity rover, but with some upgrades and new instruments (NASA/JPL-Caltech/MSSS)

As explained last week at the Ab-Sci-Con 2022 conference in Atlanta, the deputy program scientist for the mission — Katie Stack Morgan of NASA’s Jet Propulsion Lab — from the mission’s perspective the presence of both igneous and nearby sedimentary rock offers the best of both worlds.

While sedimentary rock is traditionally where scientists look for signs of ancient life, igneous rock can date the site more exactly and it can potentially better preserve any signs of early microbial life.

And in the context of Perseverance, the presence of accessible and compelling igneous formations provides for the diversity of rock samples called for in the Mars Sample Return effort — another central part of the rover’s mission.

“We did a lot of work with our different instruments to come to the conclusion that we landed on  igneous rock,” Stack Morgan later said in an interview. … Read more

New Findings Suggest the Building Blocks For Life’s Genetic Structure May Well Have Arrived From Above

Conceptual image of meteoroids delivering nucleobases to ancient Earth. The nucleobases are represented by structural diagrams with hydrogen atoms as white spheres, carbon as black, nitrogen as blue and oxygen as red. (NASA Goddard/CI Lab/Dan Gallagher)

All of life, from simplest to most complex, contains five information-passing compounds that allow the genetic code to work.  These nitrogen-based compounds, called nucleobases, are found in all the the DNA and RNA that  provide the instructions to build and operate every living thing on Earth.

How these compounds are formed, or where they come from, has long been a key question in astrobiology and the search for the origin of life.

Numerous theories have been advanced to explain their presence, including that they arrived on Earth via meteorites and the infall of dust.  But until recently, only three of these nucleobases have been found embedded in meteorites but, puzzlingly, the two others have not been found.

Now an international team centered in Japan has completed the search for nucleobases in meteorites by finding the remaining two, and so it appears possible that all these building blocks of the genetic code could have arrived on very early Earth from afar.

Yasuhiro Oba of the University of Hokkaido, and lead author of the new study in Nature Communications, said that  extraterrestrial material arrived in much greater quantities on the early Earth — during what is called the period of “late heavy bombardment” — and so the discovery “of all five primary nucleobases in DNA/RNA indicates that these components should have been provided to the early Earth with such extraterrestrial materials.”

This certainly does not mean that fully formed DNA or RNA was delivered to Earth.  Oba said the process of making those nucleic acids from components parts, including nucleobases, is under active study but is not particularly well understood.  But it does mean that essential building blocks for the genetic backbone of life clearly did arrive from space for possible use in the life-forming process.

“We don’t know how life first started on the Earth, but the discovery of extraterrestrial nucleobases in meteorites provides additional support for the theory that meteorite delivery could have seeded the early Earth with the fundamental units of the genetic code found in DNA and RNA in all life today,” said co-author Daniel Glavin of NASA’s Goddard Spaceflight Center.

“These nucleobases are highly soluble in liquid water, so over time, any meteorite fragments exposed to water on the early Earth would be extracted from the meteorites into the water and could therefore contribute to the chemical inventory of the prebiotic soup from which life emerged.”… Read more

A Clue Into The Makeup of Jupiter’s Moon Europa Provided by the Greenland Ice Sheet

Double ridge ice formations seen on Europa are similar to formations detected on the Greenland Ice Sheet. This artist’s rendering shows how double ridges on the surface of Jupiter’s moon Europa may form over shallow, refreezing water pockets within the ice shell. This mechanism is based on the study of an analogous double ridge feature found on Earth’s Greenland Ice Sheet. (Justice Blaine Wainwright)

Europa’s ice crust is crossed by thousands of double ridges, pairs of long parallel raised lines with a small valleys in between, sometimes as much as hundreds of miles long and skyscraper-height tall rims. While these double ridges are ubiquitous on Europa’s surface, how they form remains something of a mystery to scientists.

Dustin Schroeder, an associate professor of geophysics at Stanford University’s School of Earth, Energy & Environmental Sciences, was working on an issue related to climate change when he saw double ridges similar to those seen on Europa here on Earth.  The ridges, in Northwest Greenland, were tiny when compared with those on Europa, but the found the same “M”-shaped crest as found everywhere on that Jovian moon.

“We were working on something totally different related to climate change and its impact on the surface of Greenland when we saw these tiny double ridges – and we were able to see the ridges go from ‘not formed’ to ‘formed,’ ” Schroeder said.

Could the double ridges be forming as a result of processes similar to those that form the double ridges on Europa?

If so, then Greenland would provide a possibly important new window into a central question about Europa:  Is that thick ice shell surrounding the subsurface ocean completely solid, or does it have what are called “water sills” within the shell?

This is important because, as the Nature Communications paper concludes, “If the same process is responsible for Europa’s double ridges, our results suggest that shallow liquid water is spatially and temporally ubiquitous across Europa’s ice shell.”

Or as Schroeder put it, “If the mechanism we see in Greenland is how these things happen on Europa, it suggests there’s water everywhere,” he said in a release.

They can make this inference because the double ridges formed in Greenland are the known, and detectable, result of the dynamics of subsurface water surrounded by the ice sheet.

Surface imagery comparison of a double ridge on Europa (a) and on Earth (b), on the Northwest Greenland Ice Sheet.

Read more
« Older posts

© 2022 Many Worlds

Theme by Anders NorenUp ↑