Tag: NASA (page 1 of 3)

“Agnostic Biosignatures,” And the Path to Life as We Don’t Know It

Most research into signs of life in our solar system or on distant planets uses life on Earth as a starting point. But now NASA has begun a major project to explore the potential signs of life very different from what we have on Earth.  For example, groups of molecules, like those above, can be analyzed for complexity, regardless of their specific chemical constituents.  ( Brittany Klein/Goddard Space Flight Center)

Biosignatures – evidence that says or suggests that life has been present – are often very hard to find and interpret.

Scientists examining fossilized life on Earth can generally reach some sort of agreement about what is before them, but what about the soft-bodied or even single-celled organisms that were the sum total of life on Earth for much of the planet’s history as a living domain? Scientific disagreements are common.

Now think of trying to determine whether a particular outline on an ancient Martian rock, or a geochemical or surface anomaly on that rock, is a sign of life. Or perhaps an unexpected abundance of a particular compound in one of the water vapor plumes coming out of the moons Europa or Enceladus. Or a peculiar chemical imbalance in the atmosphere of a distant exoplanet as measured in the spectral signature collected via telescope.

These are long-standing issues and challenges, but they have taken on a greater urgency of late as NASA missions  (and those of other space agencies around the world) are being designed to actively look for signs of extraterrestrial life – most likely very simple life – past or present.

And that combination of increased urgency and great difficulty has given rise to at least one new way of thinking about those potential signs of life. Scientists call them “agnostic biosignatures” and they do not presuppose any particular biochemistry.

“The more we explore the solar system and distant exoplanets, the more we find worlds that are really foreign,”  said Sarah Stewart Johnson, at an assistant professor at Georgetown University and principal investigator of the newly-formed Laboratory for Agnostic Biosignatures (LAB).  The LAB team won a five-year, $7 million grant last year from NASA’s Astrobiology Program.

“So our goal is to go beyond our current understandings and find ways to explore the world of life as we don’t know it,” she told me.  “That might mean thinking about a spectrum of how ‘alive’ something might be… And we’re embracing uncertainty, looking as much for biohints as biosignatures.”

Johnson first visited the acid salt lakes of the Yilgarn Craton of Western Australia as a graduate student at MIT, and has returned multiple with colleagues to understand mineral biosignatures as well as biomarker preservation in this analog environment for early Mars.

Read more

Exoplanets Discoveries Flood in From TESS

NASA’s Transiting Exoplanet Survey Satellite (TESS) has hundreds of “objects of interest” waiting to be confirmed as planets in the data from the space telescope’s four cameras.  These three were the first confirmed TESS discoveries, identified last year during its first three months of observing. By the time the mission is done, TESS’s wide-field cameras will have covered the whole sky in search of transiting exoplanets around 200,000 of the nearest (and brightest) stars. (NASA / MIT / TESS)

The newest space telescope in the sky — NASA’s Transiting Exoplanet Survey Satellite, TESS — has been searching for exoplanets for less than a year, but already it has quite a collection to its name.

The TESS mission is to find relatively nearby planets orbiting bright and stable suns, and so expectations were high from the onset about the discovery of important new planets and solar systems.  At a meeting this week at the Massachusetts Institute of Technology devoted to TESS  results,  principal investigator George Ricker pronounced the early verdict.

The space telescope, he said,  “has far exceeded our most optimistic hopes.”  The count is up to 21 new planets and 850 additional  candidate worlds waiting to be confirmed.

Equally or perhaps more important is that the planets and solar systems being discovered promise important results.  They have not yet included any Earth-sized rocky planet in a sun’s habitable zone — what is generally considered the most likely, though hardly the only, kind of planet to harbor life — but they did include planets that offer a great deal when it comes to atmospheres and how they can be investigated.

This infographic illustrates key features of the TOI 270 system, located about 73 light-years away in the southern constellation Pictor. The three known planets were discovered by NASA’s Transiting Exoplanet Survey Satellite through periodic dips in starlight caused by each orbiting world. Insets show information about the planets, including their relative sizes, and how they compare to Earth. Temperatures given for TOI 270’s planets are equilibrium temperatures, (NASA’s Goddard Space Flight Center/Scott Wiessinger)

One of the newest three-planet system is called TOI-270, and it’s about 75 light years from Earth. The star at the center of the system is a red dwarf, a bit less than half the size of the sun.

Despite its small size, it’s brighter than most of the nearby stars we know host planets. And it’s stable, making its solar system especially valuable.

Read more

Curiosity Rover as Seen From High Above by Mars Orbiter

A camera on board NASA’s Mars Reconnaissance Orbiter recently spotted the Curiosity rover in Gale Crater.  The image is color-enhanced to allow surface features to become more visible. (NASA/JPL-Caltech)

This is Apollo memory month, when the 50th anniversary arrives of the first landing of astronauts on the moon.  It was a very big deal and certainly deserves attention and applause.

But there’s something unsettling about the anniversary as well, a sense that the human exploration side of NASA’s mission has disappointed and that its best days were many decades ago.   After all, it has been quite a few years now since NASA has been able to even get an astronaut to the International Space Station without riding in a Russian capsule.

There have been wondrous (and brave) NASA human missions since Apollo — the several trips to the Hubble Space Telescope for emergency repair and upgrade come to mind — but many people who equate NASA with human space exploration are understandably dismayed.

This Many Worlds column does not focus on human space exploration, but rather on the science coming from space telescopes, solar system missions, and the search for life beyond Earth.

And as I have argued before, the period that following the last Apollo mission and began with the 1976 Viking landings on Mars has been — and continues to be — the golden era of space science.

This image of Curiosity,  which is now exploring an area that has been named Woodland Bay in Gale Crater, helps make the case.

Taken on May 31 by the HiRISE camera of NASA’s Mars Reconnaissance Orbiter (MRO), it shows the rover in a geological formation that holds remains of ancient clay.  This is important because clay can be hospitable to life, and Curiosity has already proven that Mars once had the water, organic compounds and early climate to support life.

The MRO orbits between 150 and 200 miles above Mars, so this detailed image is quite a feat.

The arm of the Curiosity rover examines the once-watery remains at Woodland Bay, Gale Crater. (NASA/JPL-Caltech)

Curiosity landed on Mars for what was planned as a mission of two years-plus. That was seven years ago this coming August.

The rover has had some ups and downs and has moved more slowly than planned, but it remains in motion — collecting paradigm-shifting information, drilling into the Mars surface, taking glorious images and making its way up the slopes of Gale Crater. … Read more

NASA Announces Astrobiology Mission to Titan

 

The Dragonfly drone has been selected as the next New Frontiers mission, this time to Saturn’s moon Titan.  Animation of the vehicle taking off from the surface of the moon. (NASA)

A vehicle that flies like a drone and will try to unravel some of the mysteries of Saturn’s moon Titan was selected yesterday to be the next New Frontiers mission to explore the solar system.

Searching for the building blocks of life,  the Dragonfly mission will be able to fly multiple sorties to sample and examine sites around Saturn’s icy moon.

Titan has a thick atmosphere and features a variety of hydrocarbons, with rivers and lakes of methane, ethane and natural gas, as well as and precipitation cycles like on Earth.  As a result, Dragonfly has been described as an astrobiology mission because it will search for signs of the prebiotic environments like those on Earth that gave rise to life.

“Titan is unlike any other place in the solar system, and Dragonfly is like no other mission,” said Thomas Zurbuchen, NASA’s associate administrator for science at the agency headquarters in Washington.

“It’s remarkable to think of this rotorcraft flying miles and miles across the organic sand dunes of Saturn’s largest moon, exploring the processes that shape this extraordinary environment. Dragonfly will visit a world filled with a wide variety of organic compounds, which are the building blocks of life and could teach us about the origin of life itself.”

 

Saturn’s moon Titan is significantly larger than our moon, and larger than the planet Mercury. It features river channels of ethane and methane, and lakes of liquified natural gas. It is the only other celestial body in our solar system that has flowing liquid on its surface. (NASA)

As described in a NASA release, Titan is an analog to the very early Earth, and can provide clues to how life may have arisen on our planet.

Dragonfly will explore environments ranging from organic dunes to the floor of an impact crater where liquid water and complex organic materials key to life once existed together for possibly tens of thousands of years. Its instruments will study how far prebiotic chemistry may have progressed.

They also will investigate the moon’s atmospheric and surface properties and its subsurface ocean and liquid reservoirs. Additionally, instruments will search for chemical evidence of past or extant life.

Because it is so far from the sun, Titan’s surface temperature is around -290 degrees Fahrenheit and its surface pressure is 50 percent higher than Earth’s.… Read more

NExSS 2.0

Finding new worlds can be an individual effort, a team effort, an institutional effort. The same can be said for characterizing exoplanets and understanding how they are affected by their suns and other planets in their solar systems. When it comes to the search for possible life on exoplanets, the questions and challenges are too great for anything but a community. NASA’s NExSS initiative has been an effort to help organize, cross-fertilize and promote that community. This artist’s concept Kepler-47, the first two-star systems with multiple planets orbiting the two suns, suggests just how difficult the road ahead will be. ( NASA/JPL-Caltech/T. Pyle)

 

The Nexus for Exoplanet System Science, or “NExSS,”  began four years ago as a NASA initiative to bring together a wide range of scientists involved generally in the search for life on planets outside our solar system.

With teams from seventeen academic and NASA centers, NExSS was founded on the conviction that this search needed scientists from a range of disciplines working in collaboration to address the basic questions of the fast-growing field.

Among the key goals:  to investigate just how different, or how similar, different exoplanets are from each other; to determine what components are present on particular exoplanets and especially in their atmospheres (if they have one);  to learn how the stars and neighboring exoplanets interact to support (or not support) the potential of life;  to better understand how the initial formation of planets affects habitability, and what role climate plays as well.

Then there’s the  question that all the others feed in to:  what might scientists look for in terms of signatures of life on distant planets?

Not questions that can be answered alone by the often “stove-piped” science disciplines — where a scientist knows his or her astrophysics or geology or geochemistry very well, but is uncomfortable and unschooled in how other disciplines might be essential to understanding the big questions of exoplanets.

 

The original NExSS team was selected from groups that had won NASA grants and might want to collaborate with other scientists with overlapping interests and goals  but often from different disciplines. (NASA)

The original idea for this kind of interdisciplinary group came out of NASA’s Astrobiology Program, and especially from NASA astrobiology director Mary Voytek and colleague Shawn Domogal-Goldman of the Goddard Space Flight Center, as well as Doug Hudgins of NASA Astrophysics.  It was something of a gamble, since scientists who joined would essentially volunteer their time and work and would be asked to collaborate with other scientists in often new ways.… Read more

Our Ever-Growing Menagerie of Exoplanets

While we have never seen an exoplanet with anything near this kind of detail, scientists and artists now do know enough to represent them with characteristics that are plausible, given what is known about them..  (NASA)

With so many exoplanets already detected, with the pace of discovery continuing to be so fast, and with efforts to find more distant worlds so constant and global,  it’s easy to become somewhat blase´ about new discoveries.  After so many “firsts,” and so many different kinds of planets found in very different ways, it certainly seems that some of the thrill may be gone.

Surely the detection of a clearly “Earth-like planet” would cause new excitement — one that is not only orbiting in the habitable zone of its host star but also has signs of a potentially nurturing atmosphere in a generally supportive cosmic neighborhood.

But while many an exoplanet has been described as somewhat “Earth-like” and potentially habitable, further observation has consistently reduced the possibility of the planets actually hosting some form of biology.  The technology and knowledge base needed to find distant life is surely advancing, but it may well still have a long way to go.

In just the last few days, however, a slew of discoveries have been reported that highlight the allure and science of our new Exoplanet Era.  They may not be blockbusters by themselves, but they are together part of an immense scientific exploration under way, one that is re-shaping our understanding of the cosmos and preparing us for bigger discoveries and insights to come.

 

Already 3,940 exoplanets have been identified (as of April 17) with an additional 3,504 candidates waiting to be confirmed or discarded.  this is but the start since it is widely held now that virtually every star out there has a planet, or planets, orbiting it.   That’s billions of billions of planets.  This image is a collection of NASA exoplanet renderings.

What I have in mind are these discoveries:

  • The first Earth-sized planet detected by NASA’s year-old orbiting telescope TESS (Transiting Exoplanet Survey Satellite.)  TESS is designed to find planets orbiting massive stars in our near neighborhood, and it has already made 10 confirmed discoveries.  But finding a small exoplanet — 85 percent the size of Earth — is a promising result for a mission designed to not only locate as many as 20,000 new exoplanets, but to find 500 to 1,000 the rough size of Earth or SuperEarth. 
Read more

The Kepler Space Telescope Mission Is Ending But Its Legacy Will Keep Growing.

An illustration of the Kepler Space Telescope, which is on its very last legs.  As of October 2018, the planet-hunting spacecraft has been in space for nearly a decade. (NASA via AP)

 

The Kepler Space Telescope is dead.  Long live the Kepler.

NASA officials announced on Tuesday that the pioneering exoplanet survey telescope — which had led to the identification of almost 2,700 exoplanets — had finally reached its end, having essentially run out of fuel.  This is after nine years of observing, after a malfunctioning steering system required a complex fix and change of plants, and after the hydrazine fuel levels reached empty.

While the sheer number of exoplanets discovered is impressive the telescope did substantially more:  it proved once and for all that the galaxy is filled with planets orbiting distant stars.  Before Kepler this was speculated, but now it is firmly established thanks to the Kepler run.

It also provided data for thousands of papers exploring the logic and characteristics of exoplanets.  And that’s why the Kepler will indeed live long in the world of space science.

“As NASA’s first planet-hunting mission, Kepler has wildly exceeded all our expectations and paved the way for our exploration and search for life in the solar system and beyond,” said Thomas Zurbuchen, associate administrator of NASA’s Science Mission Directorate in Washington.

“Not only did it show us how many planets could be out there, it sparked an entirely new and robust field of research that has taken the science community by storm. Its discoveries have shed a new light on our place in the universe, and illuminated the tantalizing mysteries and possibilities among the stars.”

 

 


The Kepler Space Telescope was focused on hunting for planets in this patch of the Milky Way. After two of its four spinning reaction wheels failed, it could no longer remain steady enough to stare that those distant stars but was reconfigured to look elsewhere and at a different angle for the K2 mission. (Carter Roberts/NASA)

 

Kepler was initially the unlikely brainchild of William Borucki, its founding principal investigator who is now retired from NASA’s Ames Research Center in California’s Silicon Valley.

When he began thinking of designing and proposing a space telescope that could potentially tell us how common distant exoplanets were — and especially smaller terrestrial exoplanets like Earth – the science of extra solar planets was at a very different stage.… Read more

What Would Happen If Mars And Venus Swapped Places?

Venus, Earth and Mars (ESA).

 

What would happen if you switched the orbits of Mars and Venus? Would our solar system have more habitable worlds?

It was a question raised at the “Comparative Climatology of Terrestrial Planets III”; a meeting held in Houston at the end of August. It brought together scientists from disciplines that included astronomers, climate science, geophysics and biology to build a picture of what affects the environment on rocky worlds in our solar system and far beyond.

The question regarding Venus and Mars was proposed as a gedankenexperiment or “thought experiment”; a favorite of Albert Einstein to conceptually understand a topic. Dropping such a problem before the interdisciplinary group in Houston was meat before lions: the elements of this question were about to be ripped apart.

The Earth’s orbit is sandwiched between that of Venus and Mars, with Venus orbiting closer to the sun and Mars orbiting further out. While both our neighbors are rocky worlds, neither are top picks for holiday destinations.

Mars has a mass of just one-tenth that of Earth, with a thin atmosphere that is being stripped by the solar wind; a stream of high energy particles that flows from the sun. Without a significant blanket of gases to trap heat, temperatures on the Martian surface average at -80°F (-60°C). Notably, Mars orbits within the boundaries of the classical habitable zone (where an Earth-like planet could maintain surface water)  but the tiny planet is not able to regulate its temperature as well as the Earth might in the same location.

 

The classical habitable zone around our sun marks where an Earth-like planet could support liquid water on the surface (Cornell University).

 

Unlike Mars, Venus has nearly the same mass as the Earth. However, the planet is suffocated by a thick atmosphere consisting principally of carbon dioxide. The heat-trapping abilities of these gases soar surface temperatures to above a lead-melting 860°F (460°C).

But what if we could switch the orbits of these planets to put Mars on a warmer path and Venus on a cooler one? Would we find that we were no longer the only habitable world in the solar system?

“Modern Mars at Venus’s orbit would be fairly toasty by Earth standards,” suggests Chris Colose, a climate scientist based at the NASA Goddard Institute for Space Studies and who proposed the topic for discussion.

Dragging the current Mars into Venus’s orbit would increase the amount of sunlight hitting the red planet.… Read more

Technosignatures and the Search for Extraterrestrial Intelligence

A rendering of a potential Dyson sphere, named after Freeman A. Dyson. As proposed by the physicist and astronomer decades ago, they would collect solar energy on a solar system wide scale for highly advanced civilizations. (SentientDevelopments.com)

The word “SETI” pretty much brings to mind the search for radio signals come from distant planets, the movie “Contact,” Jill Tarter, Frank Drake and perhaps the SETI Institute, where the effort lives and breathes.

But there was a time when SETI — the Search for Extraterrestrial Intelligence — was a significantly broader concept, that brought in other ways to look for intelligent life beyond Earth.

In the late 1950s and early 1960s — a time of great interest in UFOs, flying saucers and the like — scientists not only came up with the idea of searching for distant intelligent life via unnatural radio signals, but also by looking for signs of unexpectedly elevated heat signatures and for optical anomalies in the night sky.

The history of this search has seen many sharp turns, with radio SETI at one time embraced by NASA, subsequently de-funded because of congressional opposition, and then developed into a privately and philanthropically funded project of rigor and breadth at the SETI Institute.  The other modes of SETI went pretty much underground and SETI became synonymous with radio searches for ET life.

But this history may be about to take another sharp turn as some in Congress and NASA have become increasingly interested in what are now called “technosignatures,” potentially detectable signatures and signals of the presence of distant advanced civilizations.  Technosignatures are a subset of the larger and far more mature search for biosignatures — evidence of microbial or other primitive life that might exist on some of the billions of exoplanets we now know exist.

And as a sign of this renewed interest, a technosignatures conference was scheduled by NASA at the request of Congress (and especially retiring Republican Rep. Lamar Smith of Texas.)  The conference took place in Houston late last month, and it was most interesting in terms of the new and increasingly sophisticated ideas being explored by scientists involved with broad-based SETI.

“There has been no SETI conference this big and this good in a very long time,” said Jason Wright, an astrophysicist and professor at Pennsylvania State University and chair of the conference’s science organizing committee.  “We’re trying to rebuild the larger SETI community, and this was a good start.”

 

At this point, the search for technosignatures is often likened to that looking for a needle in a haystack.

Read more

Breakthrough Findings on Mars Organics and Mars Methane

The Curiosity rover on Mars takes a selfie at a site named Mojave. Rock powdered by the rover drill system and then intensively heated rock and then heated to as much as 800 degrees centigrade produced positive findings for long-sought organics. (NASA/JPL-Caltech/MSSS.)

A decades-long quest for incontrovertible and complex Martian organics — the chemical building blocks of life — is over.

After almost six years of searching, drilling and analyzing on Mars, the Curiosity rover team has conclusively detected three types of naturally-occurring organics that had not been identified before on the planet.

The Mars organics Science paper, by NASA’s Jennifer Eigenbrode and much of the rover’s Sample Analysis on Mars (SAM) instrument team, was twinned with another paper describing the discovery of a seasonal pattern to the release of the simple organic gas methane on Mars.

This finding is also a major step forward not only because it provides ground truth for the difficult question of whether significant amounts of methane are in the Martian atmosphere, but equally important it determines that methane concentrations appear to change with the seasons. The implications of that seasonality are intriguing, to say the least.

In an accompanying opinion piece in Science, Inges Loes ten Kate of Utrecht University in  Netherlands wrote of the two papers: “Both these findings are breakthroughs in astrobiology.”

The clear conclusion of these (and other) recent findings is that Mars is not a “dead” planet where little ever changes.  Rather, it’s one with cycles that appear to produce not only methane but also sporadic surface water and changing dune formations.

Remains of 3.5 billion-year old lake that once filled Gale Crater. NASA scientists concluded early in the Curiosity mission that the planet was habitable long ago based on the study of mudstone remains like these. (NASA/JPL-Caltech/MSSS)

Finding organic compounds on Mars has been a prime goal of the Curiosity rover mission.

Those carbon-based compounds surely fall from the sky on Mars, as they do on Earth and everywhere else, but identifying them has proven illusive.

The consequences of that non-discovery have been significant.  Going back to the Viking missions of 1976, scientists concluded that life was not possible on Mars because there were no organics, or none that were detected.

Jen Eigenbrode, research astrobiologist at NASA’s Goddard Space Flight Center. (NASA/W. Hrybyk)

But the reasons for the disappearing organics are pretty well understood.  Without much of an atmosphere to protect it, the Martian surface is bombarded with ultraviolet radiation, which can destroy organic compounds. … Read more

« Older posts

© 2019 Many Worlds

Theme by Anders NorenUp ↑