Tag: NASA (page 1 of 3)

Icy Moons and Their Plumes

The existence of water or water vapor plumes on Europa has been studied for years, with a consensus view that they do indeed exist.  Now NASA scientists have their best evidence so far that the moon does sporadically send water vapor into its atmosphere.  (NASA/ESA/K. Retherford/SWRI)

Just about everything that scientists see as essential for extraterrestrial life — carbon, hydrogen, oxygen, nitrogen, phosphorus, sulfur and sources of energy — is now known to be pretty common in our solar system and beyond.  It’s basically there for the taking  by untold potential forms of life.

But what is not at all common is liquid water.  Without liquid water Earth might well be uninhabited and today’s Mars, which was long ago significantly wetter, warmer and demonstrably habitable,  is widely believed to be uninhabited because of the apparent absence of surface water (and all that deadly radiation, too.)

This is a major reason why the discovery of regular plumes of water vapor coming out of the southern pole of Saturn’s moon Enceladus has been hailed as such a promising scientific development.  The moon is pretty small, but most scientists are convinced it does have an under-ice global ocean that feeds the plume and just might support biology that could be collected during a flyby.

But the moon of greatest scientific interest is Europa, one of the largest that orbits Jupiter.  It is now confidently described as having a sub-surface ocean below its crust of ice and — going back to science fiction writer extraordinaire Arthur C. Clarke — has often been rated the most likely body in our solar system to harbor extraterrestrial life.

That is why it is so important that years of studying Europa for watery plumes has now paid off.   While earlier observations strongly suggested that sporadic plumes of water vapor were in the atmosphere, only last month was the finding nailed, as reported in the journal Nature Astronomy.

“While scientists have not yet detected liquid water directly, we’ve found the next best thing: water in vapor form,” said Lucas Paganini, a NASA planetary scientist who led the water detection investigation.

 

As this cutaway shows, vents in Europa’s icy crust could allow plumes of water vapor to escape from a sub-surface ocean. If observed up close, the chemical components of the plumes would be identified and could help explain the nature and history of the ocean below. ( NASA) 

The amount of water vapor found in the European atmosphere wasn’t great — about an Olympic-sized pool worth of H2O.  … Read more

Mapping Titan, the Most Earth-Like Body in Our Solar System

In an image created by NASA’s Cassini spacecraft, sunlight reflects off lakes of liquid methane around Titan’s north pole.  Cassini radar and visible-light images allowed researchers to put together the first global geological map of Saturn’s largest moon.  (NASA/JPL-Caltech/University of Arizona/University of Idaho)

Saturn’s moon Titan has lakes and rivers of liquid hydrocarbons, temperatures that hover around -300 degrees Fahrenheit, and a thick haze that surrounds it and has cloaked it in mystery.   An unusual place for sure, but perhaps what’s most unusual is that Titan more closely resembles Earth of all the planets and moons in our solar system.

This is because like only Earth it has that flowing liquid on its surface, it has a climate featuring wind and rain that form dunes, rivers, lakes, deltas and seas (probably of filled with liquid methane and ethane), it has a thick atmosphere and it has weather patterns that change with the seasons.  The moon’s methane cycle is quite similar to our water cycle.

And now astronomers have used data from NASA’s Cassini-Huygens mission to map the entire surface of Titan for the first time.  Their work has found a global terrain of mountains, plains, valleys, craters and lakes .  Again, this makes Titan unlike anywhere else in the solar system other than Earth.

“Titan has an atmosphere like Earth. It has wind, it has rain, it has mountains,” said Rosaly Lopes, a planetary scientist at NASA’s Jet Propulsion Laboratory in Pasadena.  She and her colleagues wove together images and radar measurements taken by the spacecraft to produce the first global map of the moon.

“Titan has an active methane-based hydrologic cycle that has shaped a complex geologic landscape, making its surface one of most geologically diverse in the solar system,” she said.  “It’s a really very interesting world, and one of the best places in the solar system to look for life,”

Cassini orbited Saturn from 2004 to 2017 and collected vast amounts of information about the ringed gas giant and its moons. The mission included more than 100 fly-bys of Titan,  which allowed researchers to study the moon’s surface through its thick atmosphere and survey its terrain in unprecedented detail.

The first global geologic map of Titan is based on radar and visible-light images from NASA’s Cassini mission.

Their work, which now adds the surface of Titan to the kind of geological mapping done of the surfaces of Mars, Mercury and our moon, was published in Nature Astronomy.Read more

A Southern Sky Extravaganza From TESS

Candidate exoplanets as seen by TESS in a southern sky mosaic from 13 observing sectors. (NASA/MIT/TESS)

NASA’s Transiting Exoplanet Survey Satellite (TESS) has finished its one year full-sky observation of  Southern sky and has found hundreds of candidate exoplanets and 29 confirmed planets.  It is now maneuvering  its array of wide-field telescopes and cameras to focus on the northern sky to do the same kind of exploration.

At this turning point, NASA and the Massachusetts Institute of Technology — which played a major role in designing and now operating the mission — have put together mosaic images from the first year’s observations, and they are quite something.

Constructed from 208 TESS images taken during the mission’s first year of science operations, these images are a unique  space-based look at the entire Southern sky — including the Milky Way seen edgewise, the Large and Small Magellenic galaxies, and other large stars already known to have exoplanet.

“Analysis of TESS data focuses on individual stars and planets one at a time, but I wanted to step back and highlight everything at once, really emphasizing the spectacular view TESS gives us of the entire sky,” said Ethan Kruse, a NASA Postdoctoral Program Fellow who assembled the mosaic at NASA’s Goddard Space Flight Center.

Overlaying the figures of selected constellations helps clarify the scale of the TESS southern mosaic. TESS has discovered 29 exoplanets, or worlds beyond our solar system, and more than 1,000 candidate planets astronomers are now investigating. NASA/MIT/TESS

The mission is designed to vastly increase the number of known exoplanets, which are now theorized to orbit all — or most — stars in the sky.

TESS searches for  the nearest and brightest main sequence stars hosting transiting exoplanets, which are the most favorable targets for detailed investigations.

This animation shows how a dip in the observed brightness of a star may indicate the presence of a planet passing in front of it, an occurrence known as a transit. This is how TESS identified planet.
(NASA’s Goddard Space Flight Center)

While previous sky surveys with ground-based telescopes have mainly detected giant exoplanets, TESS will find many small planets around the nearest stars in the sky.  The mission will also provide prime targets for further characterization by the James Webb Space Telescope, as well as other large ground-based and space-based telescopes of the future.

The TESS observatory uses an array of wide-field cameras to perform a survey of 85% of the sky.… Read more

“Agnostic Biosignatures,” And the Path to Life as We Don’t Know It

Most research into signs of life in our solar system or on distant planets uses life on Earth as a starting point. But now NASA has begun a major project to explore the potential signs of life very different from what we have on Earth.  For example, groups of molecules, like those above, can be analyzed for complexity, regardless of their specific chemical constituents.  ( Brittany Klein/Goddard Space Flight Center)

Biosignatures – evidence that says or suggests that life has been present – are often very hard to find and interpret.

Scientists examining fossilized life on Earth can generally reach some sort of agreement about what is before them, but what about the soft-bodied or even single-celled organisms that were the sum total of life on Earth for much of the planet’s history as a living domain? Scientific disagreements are common.

Now think of trying to determine whether a particular outline on an ancient Martian rock, or a geochemical or surface anomaly on that rock, is a sign of life. Or perhaps an unexpected abundance of a particular compound in one of the water vapor plumes coming out of the moons Europa or Enceladus. Or a peculiar chemical imbalance in the atmosphere of a distant exoplanet as measured in the spectral signature collected via telescope.

These are long-standing issues and challenges, but they have taken on a greater urgency of late as NASA missions  (and those of other space agencies around the world) are being designed to actively look for signs of extraterrestrial life – most likely very simple life – past or present.

And that combination of increased urgency and great difficulty has given rise to at least one new way of thinking about those potential signs of life. Scientists call them “agnostic biosignatures” and they do not presuppose any particular biochemistry.

“The more we explore the solar system and distant exoplanets, the more we find worlds that are really foreign,”  said Sarah Stewart Johnson, at an assistant professor at Georgetown University and principal investigator of the newly-formed Laboratory for Agnostic Biosignatures (LAB).  The LAB team won a five-year, $7 million grant last year from NASA’s Astrobiology Program.

“So our goal is to go beyond our current understandings and find ways to explore the world of life as we don’t know it,” she told me.  “That might mean thinking about a spectrum of how ‘alive’ something might be… And we’re embracing uncertainty, looking as much for biohints as biosignatures.”

Johnson first visited the acid salt lakes of the Yilgarn Craton of Western Australia as a graduate student at MIT, and has returned multiple with colleagues to understand mineral biosignatures as well as biomarker preservation in this analog environment for early Mars.

Read more

Exoplanets Discoveries Flood in From TESS

NASA’s Transiting Exoplanet Survey Satellite (TESS) has hundreds of “objects of interest” waiting to be confirmed as planets in the data from the space telescope’s four cameras.  These three were the first confirmed TESS discoveries, identified last year during its first three months of observing. By the time the mission is done, TESS’s wide-field cameras will have covered the whole sky in search of transiting exoplanets around 200,000 of the nearest (and brightest) stars. (NASA / MIT / TESS)

The newest space telescope in the sky — NASA’s Transiting Exoplanet Survey Satellite, TESS — has been searching for exoplanets for less than a year, but already it has quite a collection to its name.

The TESS mission is to find relatively nearby planets orbiting bright and stable suns, and so expectations were high from the onset about the discovery of important new planets and solar systems.  At a meeting this week at the Massachusetts Institute of Technology devoted to TESS  results,  principal investigator George Ricker pronounced the early verdict.

The space telescope, he said,  “has far exceeded our most optimistic hopes.”  The count is up to 21 new planets and 850 additional  candidate worlds waiting to be confirmed.

Equally or perhaps more important is that the planets and solar systems being discovered promise important results.  They have not yet included any Earth-sized rocky planet in a sun’s habitable zone — what is generally considered the most likely, though hardly the only, kind of planet to harbor life — but they did include planets that offer a great deal when it comes to atmospheres and how they can be investigated.

This infographic illustrates key features of the TOI 270 system, located about 73 light-years away in the southern constellation Pictor. The three known planets were discovered by NASA’s Transiting Exoplanet Survey Satellite through periodic dips in starlight caused by each orbiting world. Insets show information about the planets, including their relative sizes, and how they compare to Earth. Temperatures given for TOI 270’s planets are equilibrium temperatures, (NASA’s Goddard Space Flight Center/Scott Wiessinger)

One of the newest three-planet system is called TOI-270, and it’s about 75 light years from Earth. The star at the center of the system is a red dwarf, a bit less than half the size of the sun.

Despite its small size, it’s brighter than most of the nearby stars we know host planets. And it’s stable, making its solar system especially valuable.

Read more

Curiosity Rover as Seen From High Above by Mars Orbiter

A camera on board NASA’s Mars Reconnaissance Orbiter recently spotted the Curiosity rover in Gale Crater.  The image is color-enhanced to allow surface features to become more visible. (NASA/JPL-Caltech)

This is Apollo memory month, when the 50th anniversary arrives of the first landing of astronauts on the moon.  It was a very big deal and certainly deserves attention and applause.

But there’s something unsettling about the anniversary as well, a sense that the human exploration side of NASA’s mission has disappointed and that its best days were many decades ago.   After all, it has been quite a few years now since NASA has been able to even get an astronaut to the International Space Station without riding in a Russian capsule.

There have been wondrous (and brave) NASA human missions since Apollo — the several trips to the Hubble Space Telescope for emergency repair and upgrade come to mind — but many people who equate NASA with human space exploration are understandably dismayed.

This Many Worlds column does not focus on human space exploration, but rather on the science coming from space telescopes, solar system missions, and the search for life beyond Earth.

And as I have argued before, the period that following the last Apollo mission and began with the 1976 Viking landings on Mars has been — and continues to be — the golden era of space science.

This image of Curiosity,  which is now exploring an area that has been named Woodland Bay in Gale Crater, helps make the case.

Taken on May 31 by the HiRISE camera of NASA’s Mars Reconnaissance Orbiter (MRO), it shows the rover in a geological formation that holds remains of ancient clay.  This is important because clay can be hospitable to life, and Curiosity has already proven that Mars once had the water, organic compounds and early climate to support life.

The MRO orbits between 150 and 200 miles above Mars, so this detailed image is quite a feat.

The arm of the Curiosity rover examines the once-watery remains at Woodland Bay, Gale Crater. (NASA/JPL-Caltech)

Curiosity landed on Mars for what was planned as a mission of two years-plus. That was seven years ago this coming August.

The rover has had some ups and downs and has moved more slowly than planned, but it remains in motion — collecting paradigm-shifting information, drilling into the Mars surface, taking glorious images and making its way up the slopes of Gale Crater. … Read more

NASA Announces Astrobiology Mission to Titan

 

The Dragonfly drone has been selected as the next New Frontiers mission, this time to Saturn’s moon Titan.  Animation of the vehicle taking off from the surface of the moon. (NASA)

A vehicle that flies like a drone and will try to unravel some of the mysteries of Saturn’s moon Titan was selected yesterday to be the next New Frontiers mission to explore the solar system.

Searching for the building blocks of life,  the Dragonfly mission will be able to fly multiple sorties to sample and examine sites around Saturn’s icy moon.

Titan has a thick atmosphere and features a variety of hydrocarbons, with rivers and lakes of methane, ethane and natural gas, as well as and precipitation cycles like on Earth.  As a result, Dragonfly has been described as an astrobiology mission because it will search for signs of the prebiotic environments like those on Earth that gave rise to life.

“Titan is unlike any other place in the solar system, and Dragonfly is like no other mission,” said Thomas Zurbuchen, NASA’s associate administrator for science at the agency headquarters in Washington.

“It’s remarkable to think of this rotorcraft flying miles and miles across the organic sand dunes of Saturn’s largest moon, exploring the processes that shape this extraordinary environment. Dragonfly will visit a world filled with a wide variety of organic compounds, which are the building blocks of life and could teach us about the origin of life itself.”

 

Saturn’s moon Titan is significantly larger than our moon, and larger than the planet Mercury. It features river channels of ethane and methane, and lakes of liquified natural gas. It is the only other celestial body in our solar system that has flowing liquid on its surface. (NASA)

As described in a NASA release, Titan is an analog to the very early Earth, and can provide clues to how life may have arisen on our planet.

Dragonfly will explore environments ranging from organic dunes to the floor of an impact crater where liquid water and complex organic materials key to life once existed together for possibly tens of thousands of years. Its instruments will study how far prebiotic chemistry may have progressed.

They also will investigate the moon’s atmospheric and surface properties and its subsurface ocean and liquid reservoirs. Additionally, instruments will search for chemical evidence of past or extant life.

Because it is so far from the sun, Titan’s surface temperature is around -290 degrees Fahrenheit and its surface pressure is 50 percent higher than Earth’s.… Read more

NExSS 2.0

Finding new worlds can be an individual effort, a team effort, an institutional effort. The same can be said for characterizing exoplanets and understanding how they are affected by their suns and other planets in their solar systems. When it comes to the search for possible life on exoplanets, the questions and challenges are too great for anything but a community. NASA’s NExSS initiative has been an effort to help organize, cross-fertilize and promote that community. This artist’s concept Kepler-47, the first two-star systems with multiple planets orbiting the two suns, suggests just how difficult the road ahead will be. ( NASA/JPL-Caltech/T. Pyle)

 

The Nexus for Exoplanet System Science, or “NExSS,”  began four years ago as a NASA initiative to bring together a wide range of scientists involved generally in the search for life on planets outside our solar system.

With teams from seventeen academic and NASA centers, NExSS was founded on the conviction that this search needed scientists from a range of disciplines working in collaboration to address the basic questions of the fast-growing field.

Among the key goals:  to investigate just how different, or how similar, different exoplanets are from each other; to determine what components are present on particular exoplanets and especially in their atmospheres (if they have one);  to learn how the stars and neighboring exoplanets interact to support (or not support) the potential of life;  to better understand how the initial formation of planets affects habitability, and what role climate plays as well.

Then there’s the  question that all the others feed in to:  what might scientists look for in terms of signatures of life on distant planets?

Not questions that can be answered alone by the often “stove-piped” science disciplines — where a scientist knows his or her astrophysics or geology or geochemistry very well, but is uncomfortable and unschooled in how other disciplines might be essential to understanding the big questions of exoplanets.

 

The original NExSS team was selected from groups that had won NASA grants and might want to collaborate with other scientists with overlapping interests and goals  but often from different disciplines. (NASA)

The original idea for this kind of interdisciplinary group came out of NASA’s Astrobiology Program, and especially from NASA astrobiology director Mary Voytek and colleague Shawn Domogal-Goldman of the Goddard Space Flight Center, as well as Doug Hudgins of NASA Astrophysics.  It was something of a gamble, since scientists who joined would essentially volunteer their time and work and would be asked to collaborate with other scientists in often new ways.… Read more

Our Ever-Growing Menagerie of Exoplanets

While we have never seen an exoplanet with anything near this kind of detail, scientists and artists now do know enough to represent them with characteristics that are plausible, given what is known about them..  (NASA)

With so many exoplanets already detected, with the pace of discovery continuing to be so fast, and with efforts to find more distant worlds so constant and global,  it’s easy to become somewhat blase´ about new discoveries.  After so many “firsts,” and so many different kinds of planets found in very different ways, it certainly seems that some of the thrill may be gone.

Surely the detection of a clearly “Earth-like planet” would cause new excitement — one that is not only orbiting in the habitable zone of its host star but also has signs of a potentially nurturing atmosphere in a generally supportive cosmic neighborhood.

But while many an exoplanet has been described as somewhat “Earth-like” and potentially habitable, further observation has consistently reduced the possibility of the planets actually hosting some form of biology.  The technology and knowledge base needed to find distant life is surely advancing, but it may well still have a long way to go.

In just the last few days, however, a slew of discoveries have been reported that highlight the allure and science of our new Exoplanet Era.  They may not be blockbusters by themselves, but they are together part of an immense scientific exploration under way, one that is re-shaping our understanding of the cosmos and preparing us for bigger discoveries and insights to come.

 

Already 3,940 exoplanets have been identified (as of April 17) with an additional 3,504 candidates waiting to be confirmed or discarded.  this is but the start since it is widely held now that virtually every star out there has a planet, or planets, orbiting it.   That’s billions of billions of planets.  This image is a collection of NASA exoplanet renderings.

What I have in mind are these discoveries:

  • The first Earth-sized planet detected by NASA’s year-old orbiting telescope TESS (Transiting Exoplanet Survey Satellite.)  TESS is designed to find planets orbiting massive stars in our near neighborhood, and it has already made 10 confirmed discoveries.  But finding a small exoplanet — 85 percent the size of Earth — is a promising result for a mission designed to not only locate as many as 20,000 new exoplanets, but to find 500 to 1,000 the rough size of Earth or SuperEarth. 
Read more

The Kepler Space Telescope Mission Is Ending But Its Legacy Will Keep Growing.

An illustration of the Kepler Space Telescope, which is on its very last legs.  As of October 2018, the planet-hunting spacecraft has been in space for nearly a decade. (NASA via AP)

 

The Kepler Space Telescope is dead.  Long live the Kepler.

NASA officials announced on Tuesday that the pioneering exoplanet survey telescope — which had led to the identification of almost 2,700 exoplanets — had finally reached its end, having essentially run out of fuel.  This is after nine years of observing, after a malfunctioning steering system required a complex fix and change of plants, and after the hydrazine fuel levels reached empty.

While the sheer number of exoplanets discovered is impressive the telescope did substantially more:  it proved once and for all that the galaxy is filled with planets orbiting distant stars.  Before Kepler this was speculated, but now it is firmly established thanks to the Kepler run.

It also provided data for thousands of papers exploring the logic and characteristics of exoplanets.  And that’s why the Kepler will indeed live long in the world of space science.

“As NASA’s first planet-hunting mission, Kepler has wildly exceeded all our expectations and paved the way for our exploration and search for life in the solar system and beyond,” said Thomas Zurbuchen, associate administrator of NASA’s Science Mission Directorate in Washington.

“Not only did it show us how many planets could be out there, it sparked an entirely new and robust field of research that has taken the science community by storm. Its discoveries have shed a new light on our place in the universe, and illuminated the tantalizing mysteries and possibilities among the stars.”

 

 


The Kepler Space Telescope was focused on hunting for planets in this patch of the Milky Way. After two of its four spinning reaction wheels failed, it could no longer remain steady enough to stare that those distant stars but was reconfigured to look elsewhere and at a different angle for the K2 mission. (Carter Roberts/NASA)

 

Kepler was initially the unlikely brainchild of William Borucki, its founding principal investigator who is now retired from NASA’s Ames Research Center in California’s Silicon Valley.

When he began thinking of designing and proposing a space telescope that could potentially tell us how common distant exoplanets were — and especially smaller terrestrial exoplanets like Earth – the science of extra solar planets was at a very different stage.… Read more

« Older posts

© 2019 Many Worlds

Theme by Anders NorenUp ↑