Tag: NASA (page 1 of 5)

The Hows and Whys of Mars Sample Return

Combining two images, this mosaic shows a close-up view of the rock target named “Yeehgo” taken by the SuperCam instrument on NASA’s Perseverance rover on Mars. To be compatible with the rover’s software, “Yeehgo” is an alternative spelling of “Yéigo,” the Navajo word for diligent.
(NASA/JPL-Caltech/LANL/CNES/CNRS/ASU/MSSS)

One of the fondest dreams and top priorities of space science for years has been  to bring a piece of Mars back to Earth to study in the kind of depth possible only in a cutting-edge laboratory.

While the instruments on Mars rovers can tell us a lot,  returning a sample to study here on Earth is seen as the  way to ultimately tease out the deepest secrets of the composition of Mars, its geological and geochemical history and possibly the presence of life, life fossils or of the precursor molecules  of life.

But bringing such a sample to Earth is extraordinarily difficult.  Unlike solar system bodies that have been sampled back on Earth — the moon, a comet and some asteroids — Mars has the remains of an atmosphere.  That means any samples would have to lift off in a rocket brought to Mars and with some significant propulsive power, a task that so far has been a technical bridge too far.

That is changing now and the Mars Sample Return mission has begun.  The landing of the Perseverance rover in Jezero Crater on Mars signaled that commencement and the rover will be used to identify, drill into and collect intriguing bits of Mars.  This is a long-term project, with the best case scenario seeing those Mars samples arriving on Earth in a decade.  So this entirely unprecedented, high-stakes campaign will be playing out for a long time.

“I think that Mars scientists would like to return as much sample as possible,” said Lindsay Hays, NASA Mars Sample Return deputy program scientist.  “Being able to return samples that we collected with purpose is how we take the next step in our exploration of Mars.”

“And it seems that there are still so many unknowns, even in our solar system, even with the planets right next door, that every time we do something new, we answer a couple of questions that we hoped to and but also find a whole bunch of new things that we never expected.”

“I am so excited to see what comes of this adventure.  And I think that is a feeling shared by Mars scientists and planetary scientists broadly.”… Read more

The Space Telescope That Could Find a Second Earth

This rare picture of an exoplanet (called 2M1207B) shows a red world several times Jupiter’s size orbiting a brown dwarf much smaller and dimmer than our sun. LUVOIR is after more elusive targets: small, rocky planets around bright stars. (ESO)

What will it take to capture images and spectra of a distant world capable of harboring life?
Air & Space Magazine | Subscribe

 

For all the excitement surrounding the search for distant exoplanets in recent years, the 4,000-plus planets confirmed so far have been unseen actors on the cosmic stage. Except for a handful of very large bodies imaged by ground-based telescopes, virtually all exoplanets have been detected only when they briefly dim the light coming from their host stars or when their gravity causes the star to wobble in a distinctive way. Observing these patterns and using a few other methods, scientists can determine an exoplanet’s orbit, radius, mass, and sometimes density—but not much else. The planets remain, in the words of one researcher in the field, “small black shadows.”

Scientists want much more. They’d like to know in detail the chemical makeup of the planets’ atmospheres, whether liquid water might be present on their surfaces, and, ultimately, whether these worlds might be hospitable to life.

Answering those questions will require space telescopes that don’t yet exist. To determine what kinds of telescopes, NASA commissioned two major studies that have taken large teams of (mostly volunteer) scientists and engineers four years to complete. The results are now under review by the National Academy of Sciences, as part of its Decadal Survey for Astronomy and Astrophysics that will recommend government funding priorities for the 2030s. Past and current NASA mega-projects, from the Hubble Space Telescope launched in 1990 to the James Webb Space Telescope, which is scheduled for launch this year, have all gone through this same vetting process. Sometime this spring, the Decadal Survey is expected to wrap up its deliberations and make recommendations.

That puts four proposals in the running to become NASA’s next “Great Observatory” in space: an X-ray telescope called Lynx; the Origins Space Telescope for studying the early universe; and two telescopes devoted mostly, but not exclusively, to exoplanets. One is called HabEx, for Habitable Exoplanet Observatory. The other—the most ambitious, most complex, most expensive, and most revolutionary of all these concepts—is called LUVOIR, for Large UV/Optical/IR Surveyor.… Read more

What Happened to All That Water on Ancient Mars? A New Theory With a Surprising Answer

How did Mars lose the surface water that was plentiful on its surface 3 to 4 billion years ago?  New research says it did not leave the planet but rather was incorporated on a molecular level into Martian minerals.  (NASA)

Once it became clear in the past decade that the surface of ancient Mars, the inevitable question arose regarding what happened to it all since the planet is today so very dry.  And the widely-accepted answer has been that the water escaped into space, especially after the once thicker atmosphere of Mars was stripped away.

But NASA-funded research just made public has a new and bold and very different answer:  Much of the water that formed rivers, lakes and deep oceans on Mars, the research concludes, sank below the planet’s surface and is trapped inside minerals in the planet’s rocky crust.

Since early Mars is now thought to have had as much surface water as half of the the Earth’s Atlantic Ocean — enough to cover most of Mars in at least 100 meters of water — that means huge volumes of water became incorporated into the molecular structure of clays, sulfates, carbonates, opals and other hydrated minerals.

While some of the early water surely disappeared from Mars via atmospheric escape, the new findings, published in the latest issue of Science, conclude that atmospheric loss can not account for much or most of its water loss — especially now that estimates of how much water once existed on the surface of the planet have increased substantially.

“Atmospheric escape doesn’t fully explain the data that we have for how much water actually once existed on Mars,” said Eva Scheller, lead author and a doctoral candidate at the California Institute of Technology.  The rate of water loss was found to be too slow to explain what happened.

Scheller and others at Caltech set out to find other explanations. Based on modeling and data collected by Mars orbiters, rovers and from meteorites, they concluded that between 30 and 99 percent of that very early Martian surface water can now be found trapped in the minerals of the planet’s crust.

Mars mudstone, as imaged by the Curiosity rover.  (NASA/JPL-Caltech)

As described in a release for NASA’s Jet Propulsion Laboratory, the team studied the quantity of water on Mars over time in all its forms (vapor, liquid, and ice) and the chemical composition of the planet’s current atmosphere and crust through the analysis of meteorites as well as using data provided by Mars rovers and orbiters. … Read more

NASA’s Perseverance Rover Lands on Mars — The Third Martian Arrival in a Week

This true-color Mars globe includes Terra Meridiani, the region where NASA’s Opportunity rover explored from 2004 to 2018.  Two more Mars rovers — one from NASA and the other from China — are scheduled to land this week and then later in the year. (NASA/Greg Shirah)

Mars is receiving visitors these days.  Quite a few of them.

The most prominent visitor is NASA’s Perseverance rover,  which made a difficult but smooth precision landing at 3.55 ET  this afternoon.

The rover now sits in Jezero Crater, in an area that clearly once had lots of water flowing.   The site was selected, in part, because the Perseverance rover’s official mission includes — for the first time since the mid 1970s — an effort to find signs of long ago life.

Perseverance will join the Curiosity rover on Mars, that pioneering machine that has revolutionized our understanding of the planet since it landed in 2012  The Curiosity and Perseverance rovers are similar in design but carry different instruments with different goals.

A key difference:  Curiosity was tasked with determining whether Mars had once been habitable and found that it definitely had been, with flowing rivers, large lakes and necessary-for-life organic compounds.  Perseverance will take another scientific step forward and search for signs that Mars actually was once inhabited.

Perseverance also joins China’s Tianwen-1 (“heavenly questions”) probe,  which went into orbit around Mars last week.  It is the first Chinese spacecraft to arrive at Mars, and later this spring or summer the Chinese space agency will attempt to land a rover as well on the planet’s northern plains..

And then there’s the Hope spacecraft which entered into Mars orbit last week as well.  Launched by the United Arab Emirates, it was placed in a wide orbit so it could study the planet’s weather and climate systems, which means it also can see the full planet in one view.

These spacecraft will join several others on or orbiting Mars, making this by far the busiest time ever for exploration of Mars — a real milestone.

NASA’s Perseverance rover will land in Jezero Crater. This image was produced using instruments on NASA’s Mars Reconnaissance Orbiter, which helps identify potential landing sites for future missions. On ancient Mars, water carved channels and transported sediments to form fans and deltas within lake basins, as is clearly visible at here at Jezaro Crater (NASA/JPL-Caltech/ASU)

That the Perseverance mission has a formal goal of searching for ancient signs of life is a big deal, and involves a lot of history.… Read more

More Weird and Wild Planets

A world called TOI-849b could be the exposed, naked core of a former gas giant planet whose atmosphere was blasted away by its star.  Every day is a bad day on planet TOI-849b. . It hugs its star so tightly that a year – one trip around the star – takes less than a day. And it pays a high price for this close embrace: an estimated surface temperature of nearly 2,800 degrees Fahrenheit (1,500 degrees Celsius) It’s a scorcher even compared to Venus, which is 880 degrees Fahrenheit (471 degrees Celsius). About half the mass of our own Saturn, this planet orbits a Sun-like star more than 700 light-years from Earth. (NASA/Exoplanet Exploration Program)

The more we learn about the billions upon billions of planets that orbit beyond our solar system, the more we are surprised by the wild menagerie of objects out there.  From the start, many of these untolled planets have been startling, paradigm-breaking,  mysterious, hellish, potentially habitable and just plain weird.  Despite the confirmed detection of more than 4,000 exoplanets, the job of finding and characterizing these worlds remains in its early phases.  You could make the argument that  learning a lot more about these distant exoplanets and their solar systems is not just one of the great tasks of future astronomy, but of future science.

And that is why Many Worlds is returning to the subject of “Weird Planets,” which first appeared in this column at the opening of 2019.  It has been the most viewed column in our archive, and a day seldom goes by without someone — or some many people — decide to read it.

So here is not a really a sequel, but rather a continuation of writing about this unendingly rich subject.  And as I will describe further on,  almost all of the planets on display so far have been detected and characterized without ever having been seen.  The characteristics and colors presented in these (mostly) artistic renderings are the result of indirect observing and discovery — measuring how much light dims when a faraway planet crosses its host star, or how much the planet’s gravity causes its sun to move.

As a result, these planets are sometimes called “small, black shadows.” Scientists can infer a lot from the indirect measurements they make and from the beginnings of the grand effort to spectroscopically read the chemical makeup of exoplanet atmospheres. … Read more

How Radioactive Elements May Make Planets Suitable or Hostile to Life

An artist’s conception of a super Venus planet on the left and a super Earth on the right.  The question of what makes one planet habitable and one uninhabitable is a focus of many astrobiology researchers.  A new hypothesis looks at the presence of radioactive elements as an important factor in making a solar system habitable. (NASA/JPL-Caltech/Ames)

When describing exoplanets that are potentially promising candidates for life, scientists often use the terminology of the “habitable zone.”  This is a description of planets in orbit where temperatures, as predicted by the distance from the host star,  are not too cold for liquid water to exist on a planetary surface and also not to hot for all the water to burn off.

This planetary sweet spot, which not surprisingly Earth inhabits, is also more casually called the “Goldilocks zone” for exoplanets.

While there is certainly value to the habitable zone concept, there has also been scientific pushback to using the potential presence of liquid water as a primary or singular factor in predicting potential habitability.

There are just too many other factors that can play into habitability, some argue, and a focus on a planet’s distance from its host sun (and thus its temperature regime) is too narrow.  After all, several of the objects that just might support life in our own solar system are icy moons quite far from any solar system habitable zone.

With these concerns in the background, an interdisciplinary team of astrophysicists and planetary scientists at the University of California, Santa Cruz has begun to look at a source of heat in addition to suns and tidal forces that might play a role in making a planet habitable.

This source is the heat generated by the decay of long-lived radioactive elements such as uranium, thorium and potassium, which are found in stars and presumably on and in planets throughout the galaxies in greater or lesser amounts.

Using theory and modeling, they have concluded that the abundance of these radioactive elements in a planetary mantle can indeed give important insights into whether life might emerge there.

Supercomputer models of Earth’s magnetic field,  which is kept going thanks in part to the heat and subsequent convection produced by radioactive decay. (NASA)

Uranium is among the most widespread  elements on Earth — 500 times more common than gold It is present on the surface and in the mantle below. (Atomic Heritage Foundation.)

Read more
Captured on Oct. 20 during the OSIRIS-REx mission’s Touch-And-Go (TAG) sample collection, the NASA spacecraft approached and touches down on asteroid Bennu’s surface. The dramatic sampling event, a NASA first,  brought the spacecraft down to sample site Nightingale.  The team on Earth received confirmation of successful touchdown at 6:08 p.m. EDT. (NASA/Goddard/University of Arizona)

Over 200 million miles away,  NASA’s OSIRIS-REx spacecraft on Tuesday unfurled its robotic arm and descended to the surface of the asteroid Bennu.  It appeared to crush some rock as it touched down, quickly fired some nitrogen gas to kick up the sample and then after 5 or 6 seconds it flew away to safety after a back-away burn.

One day after the “tag,” NASA officials announced that the sample collection appeared to have been it to be a successful,  and they released images and video of the dramatic scoop.  The spacecraft touched down within three feet of the Nightingale target location and NASA officials said that most of the sample collection occurred in the first three seconds.

The sample will consist of grains of a surface that has experienced none of the ever-active geology on Earth,  no modifications caused by life,  and little of the erosion and weathering.  In other words, it will be a sample of the very early solar system from which our planet arose.

The asteroid visit is the first ever accomplished by NASA, following in the path set by the Japan Aerospace Exploration Agency (JAXA) and its two Hayabusa missions.

“This amazing first for NASA demonstrates how an incredible team from across the country came together and persevered through incredible challenges to expand the boundaries of knowledge,” said NASA Administrator Jim Bridenstine. “Our industry, academic, and international partners have made it possible to hold a piece of the most ancient solar system in our hands.”

Artist rendering for OSIRIS-REX spacxecrsft as it approaches the asteroid Bennu to collect a sample and quickly depart. The “tag” took place on Oct. 20. (NASA)

While it remains somewhat unclear how much sample was collected by OSIRIS-REx, the mission’s principal investigator,  Dante Lauretta of the University of Arizona, said he was optimistic.

The sampling mechanism touched down in part on a rock about 8 inches wide, something that could have prevented the gathering mechanism from pressing up properly against the surface.

“I must have watched about a hundred times last night,” Lauretta, said during a news conference on Wednesday.

Read more

Surprising Insights Into the Asteroid Bennu’s Past, as OSIRIS-REx Prepares For a Sample-Collecting “Tag”

Artist rendering of the OSIRIS-REx spacecraft as it will approach the asteroid Bennu to collect a sample of ancient, pristine solar system material. The  pick-up”tag” is scheduled for Oct. 20. (NASA Goddard Space Flight Center, University of Arizona)

Long before there was an Earth, asteroids large and small were orbiting our young sun.  Among them was one far enough out from the sun to contain water ice, as well as organic compounds with lots of carbon.  In its five billion years or so as an object,  the asteroid was hit and broken apart by other larger asteroids, probably grew some more as smaller asteroids hit it,  and then was smashed to bits again many millions of years ago.  Some of it might have even landed on Earth.

The product of this tumultuous early history is the asteroid now called Bennu, and the destination for NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer) mission.  On October 20, the spacecraft will make its dramatic final descent, will touch the ground long enough to collect some samples of the surface, and then will in the months ahead return home with its prized catch.

The sample will consist of grains of a surface that have experienced none of the ever-active geology on Earth,  no modifications caused by life,  and little of the erosion and weathering.  In other words, it will be a sample of the very early solar system from which our planet arose.

“This will be our first chance to look at an ancient, carbon-rich environment – the most pristine example of the chemistry of the very early solar system,” said Daniel Glavin, an astrobiologist at NASA’s Space Flight Center and a co-investigator of the OSIRIS-REx team.  “Anything as ancient on early Earth would have been modified many times over.”

“But at Bennu we’ll see the solar system, and the Earth,  as it was chemically before all those changes took place.  This will be the kind of pristine pre-biotic chemistry that life emerged from.”

This image of Bennu was taken by the OSIRIS-REx spacecraft from a distance of around 50 miles (80 km).
(NASA/Goddard/University of Arizona)

Bennu is an unusual asteroid.  It orbits relatively close to Earth — rather than in the main asteroid belt between Mars and Jupiter — and that’s one of several main reasons why it was selected for a visit.  It is also an asteroid with significant amounts of primeval carbon and organics, which is gold for scientists eager to understand the early solar system, planet formation and the origin of life on Earth.… Read more

Why Not Assemble Space Telescopes In Space?

Artist rendering of an in-space assembled observatory concept with a 20-meter diameter primary mirror. (NASA’s  In Space Assembled Telescope Study, iSAT)

As we grow more ambitious in our desires to see further and more precisely in space, the need for larger and larger telescope mirrors becomes inevitable.  Only with collection of significantly more photons by a super large mirror can the the quality of the “seeing” significantly improve.

The largest mirror in space now is the Hubble Space Telescope at 2.4 meters (7.9 feet) and that will be overtaken by the long-delayed James Webb Space Telescope (JWST) at 6.5 meters (21.3 feet) when it launches (now scheduled for late 2021.)  But already astronomers and space scientists are pressing for larger mirrors to accomplish what the space telescopes of today cannot do.

This is evident in the National Academies of Sciences Decadal Survey underway which features four candidate Flagship-class observatories for the 2030s.    Three proposals call for telescope mirrors that are significantly larger than the Hubble’s, and the most ambitious by far is LUVOIR  which has been proposed at 15.1 meters (or 50 feet) or at 8 meters (about 30 feet), or maybe something in between.  A primary goal of LUVOIR, and the reason for the large size of its mirrors, is that it will be looking for signs of biology on distant exoplanets — an extremely ambitious and challenging goal.

The LUVOIR team would have argued for an even larger telescope mirror except that 15.1 meters is the maximum folded size that would fit into the storage space available on the super heavy lift rockets expected to be ready by the 2030s.

This desire for larger and larger space telescopes has rekindled dormant but long-present interest in having an alternative to sending multi-billion dollar payloads into space via one launch only.  The alternative is “in-space assembly,” and NASA has shown increased interest in pushing the idea and technology forward.

Nick Siegler, Chief Technologist of NASA’s Exoplanet Exploration Program at the Jet Propulsion Lab, and others proposed a study of robotic in-space assembly in 2018.  The idea was accepted by the NASA Director for Astrophysics Paul Hertz and Siegler said the results are promising.

The International Space Station’s robotic Canadarm2 and Dextre carry an instrument assembly after removing it from the trunk of the SpaceX Dragon cargo ship (upper right), which is docked at the Harmony node of the ISS. (NASA

“For space telescopes larger than LUVOIR, in-space assembly will probably be a necessity because it’s unlikely that heavy-lift rockets will be getting any bigger than what’s being built now,” Siegler said. … Read more

An “Elegant” New Theory on How Earth Became a Wet Planet

About 71 percent of the Earth’s surface is covered by water, and vast quantities of water are also locked up in minerals on and beneath the surface.  This image of Earth comes from NASA’s Earth Polychromatic Imaging Camera (EPIC) on NOAA’s Deep Space Climate Observatory (DSCOVR), orbits Earth from a distance of about 1 million miles away. (NASA)

One of the enduring puzzles of our planet is why it is so wet.

Since Earth formed relatively close to the sun,  planetary scientists have generally held that any of the water in the building blocks of early-forming Earth was baked out and so was unavailable to make oceans or our atmosphere.

That led to theories explaining the oceans and wet atmosphere of Earth as a later addition, brought to us by meteorites and comets formed beyond the solar system’s so-called “snow line,” where volatile compounds such as water can begin to condense into ice.

This snow line is a general area between Mars and Jupiter, and that means under this theory that our water would have had to come from awfully far away.   Further complicating this view is that the isotopic makeup of that distant water ice is somewhat different from much of the water on Earth.

Now, a new paper in the journal Science from Laurette Piani of  the Université de Lorraine and colleagues, argues that Earth’s water was simply acquired like most other of our materials, through accretion when the planet formed in the inner solar nebula.

To reach that conclusion, the group re-examined 13 meteorites of the parched type formed between Earth and the sun, and they found more than of enough hydrogen present to explain how Earth got so wet (wet for our solar system, that is.)

In fact, they extrapolated from their data that enough water was available in the nebular cloud  that accompanied the formation of our sun and formed those early meteorites — called enstatite chondrites — to create three times as much water as our oceans hold.

 

 

New measurements of enstatite chondrites indicate that water could have been primarily acquired from Earth’s building blocks. Additional water was delivered to Earth’s early oceans and atmosphere by water-rich material from comets and the outer asteroid belt. (Science)

“Our discovery shows that the Earth’s building blocks might have significantly contributed to the Earth’s water and that hydrogen bearing material was present in the inner solar system at the time of the Earth and rocky planet formation, even though the temperatures were too high for water to condense,'” Piani told me.… Read more

« Older posts

© 2021 Many Worlds

Theme by Anders NorenUp ↑