Tag: JPL

Frigid Europa Holds a Huge and Maybe Habitable Ocean Beneath Its Thick Ice Covering. How is That Possible?

Europa has one of the smoothest surface of any body in the solar system.  A moon as old as Europa that did not have an ice cover — and a likely ocean inside — would be pocked with asteroid craters.  On Europa, these craters appear to be absorbed into the icy surface via geologic and thermal processes.  Giant lakes trapped in Europa’s crust also bust up the icy surface. (NASA)

Jupiter’s moon Europa is almost five times as far away from the sun as Earth is, with surface temperatures that don’t rise above minus 260 degrees Fahrenheit.  It’s slightly smaller than our moon and orbits but 400,000 miles from the solar system’s largest planet, which it takes but 3.5 Earth days to orbit.  As a result it is tidally locked, always showing the same face to Jupiter.

When it comes to potentially habitable objects in our solar system, Europa would not seem to be a terribly likely possibility.

But, of course, it is.  And in three years NASA’s Europa Clipper mission will launch to explore what would appear to be one of the most unlikely yet possible places in our solar system to find potential signs of life.

The reason why is that scientists are almost certain that under Europa ‘s 10-to 15 mile ice covering is a deep, global ocean of salty water.

The size of the ocean has not been well determined yet, with estimates of between 40 and 100 miles of depth.  But a  consensus has been reached that the ocean is likely to be global, and contains two to three times as much liquid water as found on Earth.

This then raises a question with great significance for Europa, other moons in the solar system and quite likely planets and moons well beyond us:  How can there be so much liquid water inside such frigid places?

The spot toward the lower left is one Europa, against the backdrop of Jupiter.  Images from Voyager in 1979 bolster the modern hypothesis that Europa has an underground ocean and is therefore a good place to look for extraterrestrial life. The dark spot on the upper right is a shadow of another of Jupiter’s large moons. Sixteen frames from Voyager 1’s 1979 Jupiter flyby were recently reprocessed and merged to create this image.  (NASA, Voyager 1, JPL, Caltech; Processing & License: Alexis Tranchandon / Solaris)

There are numerous possible answers to that question, and it’s likely that all or most played some role.… Read more

For First Time, Tiny CubeSat Locates a Distant Exoplanet

 

The image above, courtesy of NASA’s Jet Propulsion Laboratory, shows the CubeSat ASTERIA as it was being launched from the International Space Station in 2017.

The size of a briefcase, ASTERIA is part of a growing armada of tiny spacecraft being launched around the world and adding an increasingly important (and inexpensive) set of new tools for conducting Earth, space and exoplanet science.

ASTERIA, for instance, was designed to perform some of the complex tasks much larger space observatories use to study distant exoplanets outside our solar system.   And a new paper soon to be published in the Astronomical Journal describes how ASTERIA (short for Arcsecond Space Telescope Enabling Research in Astrophysics) didn’t just demonstrate it could perform those tasks but went above and beyond, detecting the known exoplanet 55 Cancri e.

While it was not the first detection of that exoplanet — which orbits close to its host star 41 light years away — it was the first time that a CubeSat had measured the presence of an exoplanet, something done so far only by much more sophisticated space and ground telescopes.

“Detecting this exoplanet is exciting because it shows how these new technologies come together in a real application,” said Vanessa Bailey, who led the ASTERIA  exoplanet science team at JPL.  The project was a collaboration between JPL and the Massachusetts Institute of Technology.

“We went after a hard target with a small telescope that was not even optimized to make science detections – and we got it, even if just barely,” said Mary Knapp, the ASTERIA project scientist at MIT’s Haystack Observatory and lead author of the study. “I think this paper validates the concept that motivated the ASTERIA mission: that small spacecraft can contribute something to astrophysics and astronomy.”  Both made their comments in a JPL release.

 

Artist rendering of planet Cancri 55 e. (NASA; JPL/Caltech)

 

ASTERIA was originally designed to spend 90 days in space.  But it received three mission extensions before the team lost contact with the satellite in late 2019.

The mission was not even designed to look for exoplanets.  It was, rather, a technology demonstration, with the mission’s goal to develop new capabilities for future missions. The team’s technological leap was to build a small spacecraft that could conduct fine pointing control — essentially the ability to stay focused very steadily on a distant star for long periods.… Read more

Mapping Titan, the Most Earth-Like Body in Our Solar System

In an image created by NASA’s Cassini spacecraft, sunlight reflects off lakes of liquid methane around Titan’s north pole.  Cassini radar and visible-light images allowed researchers to put together the first global geological map of Saturn’s largest moon.  (NASA/JPL-Caltech/University of Arizona/University of Idaho)

Saturn’s moon Titan has lakes and rivers of liquid hydrocarbons, temperatures that hover around -300 degrees Fahrenheit, and a thick haze that surrounds it and has cloaked it in mystery.   An unusual place for sure, but perhaps what’s most unusual is that Titan more closely resembles Earth of all the planets and moons in our solar system.

This is because like only Earth it has that flowing liquid on its surface, it has a climate featuring wind and rain that form dunes, rivers, lakes, deltas and seas (probably of filled with liquid methane and ethane), it has a thick atmosphere and it has weather patterns that change with the seasons.  The moon’s methane cycle is quite similar to our water cycle.

And now astronomers have used data from NASA’s Cassini-Huygens mission to map the entire surface of Titan for the first time.  Their work has found a global terrain of mountains, plains, valleys, craters and lakes .  Again, this makes Titan unlike anywhere else in the solar system other than Earth.

“Titan has an atmosphere like Earth. It has wind, it has rain, it has mountains,” said Rosaly Lopes, a planetary scientist at NASA’s Jet Propulsion Laboratory in Pasadena.  She and her colleagues wove together images and radar measurements taken by the spacecraft to produce the first global map of the moon.

“Titan has an active methane-based hydrologic cycle that has shaped a complex geologic landscape, making its surface one of most geologically diverse in the solar system,” she said.  “It’s a really very interesting world, and one of the best places in the solar system to look for life,”

Cassini orbited Saturn from 2004 to 2017 and collected vast amounts of information about the ringed gas giant and its moons. The mission included more than 100 fly-bys of Titan,  which allowed researchers to study the moon’s surface through its thick atmosphere and survey its terrain in unprecedented detail.

The first global geologic map of Titan is based on radar and visible-light images from NASA’s Cassini mission.

Their work, which now adds the surface of Titan to the kind of geological mapping done of the surfaces of Mars, Mercury and our moon, was published in Nature Astronomy.Read more

PIXL: A New NASA Instrument For Ferreting Out Clues of Ancient Life on Mars

 

Extremely high definition images of the com ponents of rocks and mud as taken by PIXL, the Planetary Instrument for X-ray Lithochemistry .   On the Mars 2020 rover, PIXL  will have significantly greater capabilities than previous similar instruments sent to Mars.  Rather than reporting bulk compositions averaged over several square centimeters, it will identify precisely where in the rock each element resides. With spatial resolution of about 300 micrometers, PIXL will conduct the first ever petrology investigations on Mars, correlating elemental compositions with visible rock textures . (NASA)J

The search for life, or signs of past life beyond Earth is now a central issue in space science, is central to the mission of NASA, and is actually a potentially breakthrough discovery in the making  for humanity.    The scientific stakes could hardly be higher.

But identifying evidence of ancient microbial life – and refuting all reasonable non-biological explanations for that evidence — is stunningly difficult.

As recent wrangling over Earth’s oldest rocks in Greenland has shown, determining the provenance of a deep-time biosignature even here on Earth is extraordinarily difficult. In 2016, scientists reported discovery of 3,700 million yr-old stromatolites in the Isua geological area of Greenland.

Just three years later, a field workshop held at the Isua discovery site brought experts from around the world to examine the intriguing structures and see whether the evidence cleared the very high bar needed to accept a biological interpretation. While the scientists who published the initial discovery held their ground, not one of the other scientists felt convinced by the evidence before them.  Watching and listening as the different scientists presented their cases was a tutorial in the innumerable factors involved in coming to any conclusion.

Now think about trying to wrestle with similar or more complex issues on Mars, of how scientists can reach of level of confidence to report that a sign (or hint) of past life has apparently been found.

As it turns out, the woman who led the Greenland expedition — Abigail Allwood of NASA’s Jet Propulsion Lab — is also one of the key players in the upcoming effort to find biosignatures on Mars.  She is the principal investigator of the Planetary Instrument for X-ray Lithochemistry (PIXL) that will sit on the extendable arm of the rover, and it has capabilities to see in detail the composition of Mars samples as never before.

The instrument has, of course, been rigorously tested to understand what it can and cannot do. … Read more

© 2023 Many Worlds

Theme by Anders NorenUp ↑