
Using its laser technology, the Curiosity ChemCam instrument located the highest abundance of boron observed so far on this raised calcium sulfate vein. The red outline shows the location of the ChemCam target remote micro images (inset). The remote micro images show the location of each individual ChemCam laser point (red crosshairs) and the additional chemistry associated with each point (colored bars). JPL-Caltech/MSSS/LANL/CNES-IRAP/William Rapin
For years, noted chemist and synthetic life researcher Steven Benner has talked about the necessary role of the element boron in the origin of life.
Without boron, he has found, many of the building blocks needed to form the earliest self-replicating ribonucleic acid (RNA) fall apart when they come into contact with water, which is nonetheless needed for the chemistry to succeed. Only in the presence of boron, Benner found and has long argued, can the formation of RNA and later DNA proceed.
Now, to the delight of Benner and many other scientists, the Curiosity team has found boron on Mars. In fact, as Curiosity climbs the mountain at the center of Gale Crater, the presence of boron has become increasingly pronounced.
And to make the discovery all the more meaningful to Benner, the boron is being found in rock veins. So it clearly was carried by water into the fractures, and was deposited there some 3.5 billion years ago.
Combined with earlier detections of phosphates, magnesium, peridots, carbon and other essential elements in Gale Crater, Benner told me, “we have found on Mars an environment entirely consistent with a what we consider conducive for the origin of life.
“Is it likely that life arose? I’d say yes…perhaps even, hell yes. But it’s also true that an environment conducive to the formation of life isn’t necessarily one conducive to the long-term survival of life.”

The foreground of this scene from the Mastcam on NASA’s Curiosity Mars rover shows purplish rocks near the rover’s late-2016 location. The middle distance includes future destinations for the rover. Variations in color of the rocks hint at the diversity of their composition on lower Mount Sharp. NASA/JPL-Caltech/MSSS
Another factor in the Mars-as-habitable story from Benner’s view is that there has never been the kind of water world there that many believe existed on early Earth.
While satellites orbiting Mars and now Curiosity have made it abundantly clear that early Mars also had substantial water in the form of lakes, rivers, streams and perhaps an localized ocean, it was clearly never covered in water.… Read more