Tag: astrobiology

“Agnostic Biosignatures,” And the Path to Life as We Don’t Know It

Most research into signs of life in our solar system or on distant planets uses life on Earth as a starting point. But now NASA has begun a major project to explore the potential signs of life very different from what we have on Earth.  For example, groups of molecules, like those above, can be analyzed for complexity, regardless of their specific chemical constituents.  ( Brittany Klein/Goddard Space Flight Center)

Biosignatures – evidence that says or suggests that life has been present – are often very hard to find and interpret.

Scientists examining fossilized life on Earth can generally reach some sort of agreement about what is before them, but what about the soft-bodied or even single-celled organisms that were the sum total of life on Earth for much of the planet’s history as a living domain? Scientific disagreements are common.

Now think of trying to determine whether a particular outline on an ancient Martian rock, or a geochemical or surface anomaly on that rock, is a sign of life. Or perhaps an unexpected abundance of a particular compound in one of the water vapor plumes coming out of the moons Europa or Enceladus. Or a peculiar chemical imbalance in the atmosphere of a distant exoplanet as measured in the spectral signature collected via telescope.

These are long-standing issues and challenges, but they have taken on a greater urgency of late as NASA missions  (and those of other space agencies around the world) are being designed to actively look for signs of extraterrestrial life – most likely very simple life – past or present.

And that combination of increased urgency and great difficulty has given rise to at least one new way of thinking about those potential signs of life. Scientists call them “agnostic biosignatures” and they do not presuppose any particular biochemistry.

“The more we explore the solar system and distant exoplanets, the more we find worlds that are really foreign,”  said Sarah Stewart Johnson, at an assistant professor at Georgetown University and principal investigator of the newly-formed Laboratory for Agnostic Biosignatures (LAB).  The LAB team won a five-year, $7 million grant last year from NASA’s Astrobiology Program.

“So our goal is to go beyond our current understandings and find ways to explore the world of life as we don’t know it,” she told me.  “That might mean thinking about a spectrum of how ‘alive’ something might be… And we’re embracing uncertainty, looking as much for biohints as biosignatures.”

Johnson first visited the acid salt lakes of the Yilgarn Craton of Western Australia as a graduate student at MIT, and has returned multiple with colleagues to understand mineral biosignatures as well as biomarker preservation in this analog environment for early Mars.

Read more

NExSS 2.0

Finding new worlds can be an individual effort, a team effort, an institutional effort. The same can be said for characterizing exoplanets and understanding how they are affected by their suns and other planets in their solar systems. When it comes to the search for possible life on exoplanets, the questions and challenges are too great for anything but a community. NASA’s NExSS initiative has been an effort to help organize, cross-fertilize and promote that community. This artist’s concept Kepler-47, the first two-star systems with multiple planets orbiting the two suns, suggests just how difficult the road ahead will be. ( NASA/JPL-Caltech/T. Pyle)

 

The Nexus for Exoplanet System Science, or “NExSS,”  began four years ago as a NASA initiative to bring together a wide range of scientists involved generally in the search for life on planets outside our solar system.

With teams from seventeen academic and NASA centers, NExSS was founded on the conviction that this search needed scientists from a range of disciplines working in collaboration to address the basic questions of the fast-growing field.

Among the key goals:  to investigate just how different, or how similar, different exoplanets are from each other; to determine what components are present on particular exoplanets and especially in their atmospheres (if they have one);  to learn how the stars and neighboring exoplanets interact to support (or not support) the potential of life;  to better understand how the initial formation of planets affects habitability, and what role climate plays as well.

Then there’s the  question that all the others feed in to:  what might scientists look for in terms of signatures of life on distant planets?

Not questions that can be answered alone by the often “stove-piped” science disciplines — where a scientist knows his or her astrophysics or geology or geochemistry very well, but is uncomfortable and unschooled in how other disciplines might be essential to understanding the big questions of exoplanets.

 

The original NExSS team was selected from groups that had won NASA grants and might want to collaborate with other scientists with overlapping interests and goals  but often from different disciplines. (NASA)

The original idea for this kind of interdisciplinary group came out of NASA’s Astrobiology Program, and especially from NASA astrobiology director Mary Voytek and colleague Shawn Domogal-Goldman of the Goddard Space Flight Center, as well as Doug Hudgins of NASA Astrophysics.  It was something of a gamble, since scientists who joined would essentially volunteer their time and work and would be asked to collaborate with other scientists in often new ways.… Read more

First Mapping of Interstellar Clouds in Three Dimensions; a Key Breakthrough for Better Understanding Star Formation

This snakelike gas cloud (center dark area) in the constellation Musca resembles a skinny filament. But it’s actually a flat sheet that extends about 20 light-years into space away from Earth, an analysis finds.
(Dylan O’Donnell, deography.com/WikiCommons)

When thinking and talking about “astrobiology,” many people are inclined to think of alien creatures that often look rather like us, but with some kind of switcheroo.  Life, in this view, means something rather like us that just happens to live on another planet and perhaps uses different techniques to stay alive.

But as defined by NASA, and what “astrobiology” is in real scientific terms, is the search for life beyond Earth and the exploration of how life began here.  They may seem like very different subjects but are actually joined at the hip;  having a deeper understanding of how life originated on Earth is surely one of the most important set of clues to how to find it elsewhere.

Those con-joined scientific disciplines — the search for extraterrestrial life and the extraordinarily difficult task of analyzing how it started here — together raise another most complex challenge.

Precisely how far back do we look when trying to understand the origins of life?  Do we look to Darwin’s “warm little pond?” To the Miller-Urey experiment’s conclusion that organic building blocks of life can be formed by sparking some common gases and water with electricity?  To an understanding the nature and evolution of our atmosphere?

The answer is “yes” to all, as well as to scores of additional essential dynamics of our galaxies.  Because to begin to answer those three questions, we also have to know how planets form, the chemical make-up of the cosmos, how different suns effect different exoplanets and so much more.

This is why I was so interested in reading about a breakthrough approach to understanding the shape and nature of interstellar clouds.  Because it is when those clouds of gas and dust collapse under their own gravitational attraction that stars are formed — and, of course, none of the above questions have meaning without preexisting stars.

In theory, the scope of astrobiology could go back further than star-formation, but I take my lead from Mary Voytek, chief scientist for astrobiology at NASA.  The logic of star formation is part of astrobiology, she says, but the innumerable cosmological developments going back to the Big Bang are not.

So by understanding something new about interstellar clouds — in this case determining the 3D structure of such a “cloud” — we are learning about some of the very earliest questions of astrobiology, the process that led over the eons to us and most likely life of some sort on the billions of exoplanets we now know are out there.… Read more

SETI Reconceived and Broadened; A Call for Community Proposals

A screenshot from a time lapse video of radio telescopes by Harun Mehmedinovic and Gavin Heffernan of Sunchaser Pictures was shot at several different radio astronomy facilities—the Very Large Array (VLA) Observatory in New Mexico, Owens Valley Observatory in Owens Valley California, and Green Bank Observatory in West Virginia. All three of these facilities have been or are still being partly used by the SETI (Search for the Extraterrestrial Intelligence) program. You can watch the video at: https://www.youtube.com/watch?v=SrxpgUJoHRc

A screenshot from a time lapse video of radio telescopes by Harun Mehmedinovic and Gavin Heffernan of Sunchaser Pictures that was shot at several different radio astronomy facilities—the Very Large Array (VLA) Observatory in New Mexico, Owens Valley Observatory in Owens Valley California, and Green Bank Observatory in West Virginia. All three of these facilities have been or are still being partly used by the SETI (Search for the Extraterrestrial Intelligence) program.

Earlier this summer, Natalie Cabrol, the director of the Carl Sagan Center of the SETI Institute, described a new direction for her organization in Astrobiology Magazine, and I wrote a Many World column about the changes to come.

Cabrol’s Alien Mindscapes – Perspective on the Search for Extraterrestrial Intelligence” laid out a plan for the new approach to SETI that would take advantage of the goldmine of new exoplanet discoveries in the past decade, as well as the data from fast-advancing technologies.  These fresh angles and masses of information come, she wrote,  from the worlds of astronomy and astrophysics, as well as astrobiology and the biological, geological, environmental, cognitive, mathematical, social, and computational sciences.

In her article,  Cabrol said that a call would be coming for community input on how to develop of a Virtual Institute for SETI Research. Its primary goal, she said, would be to “understand how intelligent life interacts with its environment and communicates.”

That call for white papers has now gone out in a release from SETI, which laid out the questions the organization is looking to address:

Question 1: How abundant and diverse is intelligent life in the Universe?

The Virtual Institute will use data synergistically from astrobiology, biological sciences, space and planetary exploration, and geosciences to quantitatively characterize the potential abundance and diversity of intelligent life in the Universe. The spatiotemporal distribution of potential intelligent life will be considered using models of the physicochemical evolution of the Universe.

Question 2: How does intelligent life communicate?

By drawing from a combination of cognitive sciences, neuroscience, communication and information theory, mathematical sciences, bio-neural computing, data mining, and machine learning (among others), we will proactively explore and analyze communication in intelligent terrestrial species. Building upon these analyses, we will consider the physiochemical and biochemical models of newly discovered exoplanet environments to generate and map probabilistic neural and homolog systems, and infer the resulting range of viable alien sensing systems.

Question 3: How can we detect intelligent life?Read more

Waiting on Enceladus

NASA's Cassini spacecraft completed its deepest-ever dive through the icy plume of Enceladus on Oct. 28, 2015. Credits: NASA/JPL-Caltech

NASA’s Cassini spacecraft completed its deepest-ever dive through the icy plume of Enceladus on Oct. 28, 2015. (NASA/JPL-Caltech)

Of all the possible life-beyond-Earth questions hanging fire, few are quite so intriguing as those surrounding the now famous plumes of the moon Enceladus:  what telltale molecules are in the constantly escaping jets of water vapor, and what dynamics inside the moon are pushing them out?

Seldom, if ever before, have scientists been given such an opportunity to investigate the insides of a potentially habitable celestial body from the outside.

The Cassini mission to Saturn made its closest to the surface (and last) plume fly-through a year ago, taking measurements that the team initially said they would report on within a few weeks.

That was later updated by NASA to include this guidance:  Given the important astrobiology implications of these observations, the scientists caution that it will be several months before they are ready to present their detailed findings.

The reference to “important astrobiology implications” certainly could cover some incremental advance, but it does seem to at least hint of something more.

I recently contacted the Jet Propulsion Lab for an update on the fly-through results and learned that a paper has been submitted to the journal Nature and that it will hopefully be accepted and made public in the not-too-distant future.

All this sounds most interesting but not because of any secret finding of life — as some might infer from that official language.  Cassini does not have the capacity to make such a detection, and there is no indication at this point that identifiable byproducts of life are present in the plumes.

What is intriguing is that the fly-through was only 30 miles above the moon’s surface — the closest pass through a plume ever by Cassini — and so presumably its instruments produced some new and significant findings.

The scientists writing the paper could not, of course, discuss their findings before publication.  But Jonathan Lunine, a Cornell University planetary scientist and physicist on the Cassini mission with a longtime and deep interest in Enceladus, was comfortable discussing what is known about the moon and what Cassini (and future missions) still have to explain.

And thanks to that briefing, it became apparent that whatever new findings are coming, they will not make or break the case for the moon as a habitable place. Rather, they will essentially add to a strong case that has already been made.… Read more

© 2019 Many Worlds

Theme by Anders NorenUp ↑