Category: Featured (page 2 of 8)

A Telling Nobel Exoplanet Faux Pas

This is the Doppler velocity curve displayed by the Nobel Committee to illustrate what Mayor and Queloz had accomplished in 1995. But actually, the graph shows the curve from the Lick Observatory in California that an American team had produced to confirm the initial finding. Such was the interweaving of the work of the Swiss and the American teams searching for the first exoplanet orbiting a sun-like star. (Image courtesy of Geoff Marcy and Paul Butler, San Francisco State University)

Given the complex history of the discovery and announcement in 1995 of the first exoplanet that orbits a sun-like star, it is perhaps no surprise that errors might sneak into the retelling.  Two main groups were racing to be first, and for a variety of reasons the discovery ended up being confirmed before it was formally announced.

A confusing situation prone to mistakes if all involved aren’t entirely conversant with the details.  But an error — tantamount to scientific plagiarism — by the Nobel Committee?   That is a surprise.

The faux pas occurred at the announcement on October 8 that Michel Mayor of the University of Geneva and Didier Queloz of the the University of Cambridge had won the Nobel for physics to honor their work in detecting that first exoplanet orbiting a sun-like star.

As Nobel Committee member Ulf Danielsson described the achievement, a powerpoint display of important moments and scientific findings in their quest was displayed on a screen behind him.

When the ultimate image was on deck to be shown  — an image that presented the Doppler velocity curve that was described as the key to the discovery — the speaker appeared to hesitate after looking down to see what was coming next.

If he did hesitate, it was perhaps because to those in the know, the curve did not come from Mayor and Queloz.

Rather, it was the work of a team led by Geoffrey Marcy and Paul Butler — the San Francisco State University group that confirmed the existence of the hot Jupiter exoplanet 51 Pegasi b several days after the discovery was made public (to some considerable controversy) at a stellar systems conference in Florence.  So at a most significant juncture of the Nobel introduction of the great work of Mayor and Queloz, hard-won data by a different team was presented as part of the duo’s achievement.

This is both awkward and embarrassing, but it also indirectly points to one of the realities that the Nobel Committee is forced, by the will of Alfred Nobel, to ignore:  That science is seldom the work now of but two or three people.… Read more

PIXL: A New NASA Instrument For Ferreting Out Clues of Ancient Life on Mars


Extremely high definition images of the com ponents of rocks and mud as taken by PIXL, the Planetary Instrument for X-ray Lithochemistry .   On the Mars 2020 rover, PIXL  will have significantly greater capabilities than previous similar instruments sent to Mars.  Rather than reporting bulk compositions averaged over several square centimeters, it will identify precisely where in the rock each element resides. With spatial resolution of about 300 micrometers, PIXL will conduct the first ever petrology investigations on Mars, correlating elemental compositions with visible rock textures . (NASA)J

The search for life, or signs of past life beyond Earth is now a central issue in space science, is central to the mission of NASA, and is actually a potentially breakthrough discovery in the making  for humanity.    The scientific stakes could hardly be higher.

But identifying evidence of ancient microbial life – and refuting all reasonable non-biological explanations for that evidence — is stunningly difficult.

As recent wrangling over Earth’s oldest rocks in Greenland has shown, determining the provenance of a deep-time biosignature even here on Earth is extraordinarily difficult. In 2016, scientists reported discovery of 3,700 million yr-old stromatolites in the Isua geological area of Greenland.

Just three years later, a field workshop held at the Isua discovery site brought experts from around the world to examine the intriguing structures and see whether the evidence cleared the very high bar needed to accept a biological interpretation. While the scientists who published the initial discovery held their ground, not one of the other scientists felt convinced by the evidence before them.  Watching and listening as the different scientists presented their cases was a tutorial in the innumerable factors involved in coming to any conclusion.

Now think about trying to wrestle with similar or more complex issues on Mars, of how scientists can reach of level of confidence to report that a sign (or hint) of past life has apparently been found.

As it turns out, the woman who led the Greenland expedition — Abigail Allwood of NASA’s Jet Propulsion Lab — is also one of the key players in the upcoming effort to find biosignatures on Mars.  She is the principal investigator of the Planetary Instrument for X-ray Lithochemistry (PIXL) that will sit on the extendable arm of the rover, and it has capabilities to see in detail the composition of Mars samples as never before.

The instrument has, of course, been rigorously tested to understand what it can and cannot do. … Read more

The Remarkable Race to Find the First Exoplanet, And the Nobel Prize It Produced

Rendering of the planet that started it all — 51 Pegasi b. It is a “hot Jupiter” that, when discovered, broke every astronomical rule regarding where types of planets should be in a solar system. (NASA)

Earlier this week, the two men who detected the first planet outside our solar system that circled a sun-like star won a Nobel Prize in physics.  The discovery heralded the beginning of the exoplanet era — replacing a centuries-old scientific supposition that planets orbited other stars with scientific fact.

The two men are Michel Mayor,  Professor Emeritus at the University of Geneva and Didier Queloz, now of Cambridge University.  There is no Nobel Prize in astronomy and the physics prize has seldom gone to advances in the general field of astronomy and planetary science.  So the selection is all the more impressive.

Mayor and Queloz worked largely unknown as they tried to make their breakthrough, in part because previous efforts to detect exoplanets (planets outside our solar system) orbiting sun-like stars had fallen short, and also because several claimed successes turned out to be unfounded.  Other efforts proved to be quite dangerous:  a Canadian duo used poisonous and corrosive hydrogen flouride vapor in the 1980s as part of their planet-hunting effort.

But since their 1995 discovery opened the floodgates, the field of exoplanet science has exploded.  More than 4,000 exoplanets have been identified and a week seldom goes by without more being announced.  The consensus scientific view is now that billions upon billions of exoplanets exist in our galaxy alone.

While Mayor and Queloz were pioneers for sure, they did not work in a vacuum.  Rather, they were in a race of sorts with an American team that had also been working in similar near anonymity for years to also find an exoplanet.

And so here is a human, rather than a purely scientific, narrative look — reported over the years — into the backdrop to the just announced Nobel Prize.  While Mayor and Queloz were definitely the first to find an exoplanet, they were quite close to being the second.


Swiss astronomers Didier Queloz and Michel Mayor are seen here in 2011 in front of the European Southern Observatory’s ’s 3.6-metre telescope at La Silla Observatory in Chile. The telescope hosts the High Accuracy Radial Velocity Planet Searcher (HARPS), one of the world’s leading exoplanet hunters.  After the discovery of 51 Pegasi b, Mayor led the effort to build the HARPS planet-finding spectrometer.

Read more

On The Rugged Frontier Of The Hunt For Signs Of Life On Early Earth And Ancient Mars

The vigorously debated finding from the Isua greenstone or supercrustal belt, a 1,200-square-mile area of ancient rocks in Greenland.  Proponents say the rises, from .4 to 1.6 inches tall, are  biosignatures of bacteria and sediment mounds that made up stromatolites almost 3.8 billion years ago.  Critics say additional testing has shown they are the result of non-biological forces.  (Nature and Nutman et al.)

Seldom does one rock outcrop get so many visitors in a day, especially when that outcrop is located in rugged, frigid terrain abutting the Greenland Ice Sheet and can be reached only by helicopter.

But this has been a specimen of great importance and notoriety since it appeared from beneath the snow pack some eight years ago. That’s when it was first identified by two startled geologists as something very different from what they had seen in four decades of scouring the geologically revelatory region – the gnarled Isua supercrustal belt – for fossil signs of very early life.

Since that discovery the rock outcrop has been featured in a top journal and later throughout the world as potentially containing the earliest signature of life on Earth – the outlines of half inch to almost two inch-high stromatolite structures between 3.7 and 3.8 billion years old.

The Isua greenstone, or supracrustal belt contains some of the oldest known rocks and outcrops in the world, and is about 100 miles northeast of the capital, Nuuk.

If Earth could support the life needed to form primitive but hardly uncomplicated stromatolites that close to the initial cooling of the planet, then the emergence of life might not be so excruciatingly complex after all. Maybe if the conditions are at all conducive for life on a planet (early Mars comes quickly to mind) then life will probably appear.

Extraordinary claims in science, however, require extraordinary proof, and inevitably other scientists will want to test the claims.

Within two years of that initial ancient stromatolite splash in a Nature paper (led by veteran geologist Allen Nutman of the University of Wollongong in Australia), the same journal published a study that disputed many of the key observations and conclusions of the once-hailed ancient stromatolite discovery.  The paper concluded the outcrop had no signs of early life at all.

Debates and disputes are common in geology as the samples get older,  and especially in high profile science with important implications.  In this case, the implications of what is in the rocks reach into the solar system and the cosmos. … Read more

Exploring Early Earth by Using DNA As A Fossil

Betül Kaçar is an assistant professor at the University of Arizona, and a pioneer in the field of paleogenomics — using genetic material to dive back deep into the ancestry of important compounds. (University of Arizona)

Paleontology has for centuries worked to understand the distant past by digging up fossilized remains and analyzing how and why they fit into the evolutionary picture.  The results have been impressive.

But they have been limited.  The evolutionary picture painted relies largely on the discovery of once hard-bodied organisms, with a smattering of iconic finds of soft-bodied creatures.

In recent years, however, a new approach to understanding the biological evolution of life has evolved under the umbrella discipline of paleogenomics.  The emerging field explores ancient life and ancient Earth by focusing on genetic material from ancient organisms preserved in today’s organisms.

These genes can be studied on their own or can be synthetically placed into today’s living organisms to see if, and how, they change behavior.

The goals are ambitious:  To help understand both the early evolution and even the origins of life, as well as to provide a base of knowledge about likely characteristics of potential life on other planets or moons.

“What we do is treat DNA as a fossil, a vehicle to travel back in time,” said Betül Kaçar, an assistant professor at the University of Arizona with more than a decade of experience in the field, often sponsored by the NASA Astrobiology Program and the John Templeton Foundation.  “We build on modern biology, the existing genes, and use what we know from them to construct a molecular tree of life and come up with the ancestral genes of currently existing proteins.”

And then they ask the question of whether and how the expression of those genes — all important biomolecules generally involved in allowing a cell to operate smoothly — has changed over the eons.  It’s a variation on one the basic questions of evolution:  If the film of life were replayed from very early days, would it come out the same?

Cyanobacteria, which was responsible for the build-up of oxygen in the Earth’s atmosphere and the subsequent Great Oxidation Event about 2.5 billion years ago.  Kaçar studies and replaces key enzymes in the cyanobacteria in her effort to learn how those ancestral proteins may have behaved when compared to the same molecules today.

The possibility of such research — of taking what is existing today and reconstructing ancient sequences from it — was first proposed by Emile Zuckerkandl, a biologist known for his work in the 1960s with Linus Pauling on the hypothesis of the “molecular clock.”… Read more

“Agnostic Biosignatures,” And The Path To Life As We Don’t Know It

Most research into signs of life in our solar system or on distant planets uses life on Earth as a starting point. But now scientists  has begun a major project to explore the potential signs of life very different from what we have on Earth.  For example, groups of molecules, like those above, can be analyzed for complexity — an attribute associated with life — regardless of their specific chemical constituents.  (Brittany Klein/Goddard Space Flight Center)

Biosignatures — evidence that says or suggests that life has once been present — are often very hard to find and interpret.

Scientists examining fossilized life on Earth can generally reach some sort of agreement about what is before them, but what about the soft-bodied or even single-celled organisms that were the sum total of life on Earth for much of the planet’s history as a living domain? Scientific disagreements abound.

Now think of trying to determine whether a particular outline on an ancient Martian rock, or a geochemical or surface anomaly on that rock, is a sign of life. Or perhaps an unexpected abundance of a particular compound in one of the water vapor plumes coming out of the moons Europa or Enceladus. Or a peculiar chemical imbalance in the atmosphere of a distant exoplanet as measured in the spectral signature collected via telescope.

These are long-standing issues and challenges, but they have taken on a greater urgency of late as NASA missions  (and those of other space agencies around the world) are being designed to actively look for signs of extraterrestrial life — most likely very simple life — past or present.

And that combination of increased urgency and great difficulty has given rise to at least one new way of thinking about those potential signs of life. Scientists call them “agnostic biosignatures” and they do not presuppose any particular biochemistry.

“The more we explore the solar system and distant exoplanets, the more we find worlds that are really foreign,”  said Sarah Stewart Johnson, at an assistant professor at Georgetown University and principal investigator of the newly-formed Laboratory for Agnostic Biosignatures (LAB).  The LAB team won a five-year, $7 million grant last year from NASA’s Astrobiology Program.

“So our goal is to go beyond our current understandings and find ways to explore the world of life as we don’t know it,” she told me.  “That might mean thinking about a spectrum of how ‘alive’ something might be… And we’re embracing uncertainty, looking as much for biohints as biosignatures.”… Read more

Exoplanets Discoveries Flood in From TESS

NASA’s Transiting Exoplanet Survey Satellite (TESS) has hundreds of “objects of interest” waiting to be confirmed as planets in the data from the space telescope’s four cameras.  These three were the first confirmed TESS discoveries, identified last year during its first three months of observing. By the time the mission is done, TESS’s wide-field cameras will have covered the whole sky in search of transiting exoplanets around 200,000 of the nearest (and brightest) stars. (NASA / MIT / TESS)

The newest space telescope in the sky — NASA’s Transiting Exoplanet Survey Satellite, TESS — has been searching for exoplanets for less than a year, but already it has quite a collection to its name.

The TESS mission is to find relatively nearby planets orbiting bright and stable suns, and so expectations were high from the onset about the discovery of important new planets and solar systems.  At a meeting this week at the Massachusetts Institute of Technology devoted to TESS  results,  principal investigator George Ricker pronounced the early verdict.

The space telescope, he said,  “has far exceeded our most optimistic hopes.”  The count is up to 21 new planets and 850 additional  candidate worlds waiting to be confirmed.

Equally or perhaps more important is that the planets and solar systems being discovered promise important results.  They have not yet included any Earth-sized rocky planet in a sun’s habitable zone — what is generally considered the most likely, though hardly the only, kind of planet to harbor life — but they did include planets that offer a great deal when it comes to atmospheres and how they can be investigated.

This infographic illustrates key features of the TOI 270 system, located about 73 light-years away in the southern constellation Pictor. The three known planets were discovered by NASA’s Transiting Exoplanet Survey Satellite through periodic dips in starlight caused by each orbiting world. Insets show information about the planets, including their relative sizes, and how they compare to Earth. Temperatures given for TOI 270’s planets are equilibrium temperatures, (NASA’s Goddard Space Flight Center/Scott Wiessinger)

One of the newest three-planet system is called TOI-270, and it’s about 75 light years from Earth. The star at the center of the system is a red dwarf, a bit less than half the size of the sun.

Despite its small size, it’s brighter than most of the nearby stars we know host planets. And it’s stable, making its solar system especially valuable.

Read more

Curiosity Rover as Seen From High Above by Mars Orbiter

A camera on board NASA’s Mars Reconnaissance Orbiter recently spotted the Curiosity rover in Gale Crater.  The image is color-enhanced to allow surface features to become more visible. (NASA/JPL-Caltech)

This is Apollo memory month, when the 50th anniversary arrives of the first landing of astronauts on the moon.  It was a very big deal and certainly deserves attention and applause.

But there’s something unsettling about the anniversary as well, a sense that the human exploration side of NASA’s mission has disappointed and that its best days were many decades ago.   After all, it has been quite a few years now since NASA has been able to even get an astronaut to the International Space Station without riding in a Russian capsule.

There have been wondrous (and brave) NASA human missions since Apollo — the several trips to the Hubble Space Telescope for emergency repair and upgrade come to mind — but many people who equate NASA with human space exploration are understandably dismayed.

This Many Worlds column does not focus on human space exploration, but rather on the science coming from space telescopes, solar system missions, and the search for life beyond Earth.

And as I have argued before, the period that following the last Apollo mission and began with the 1976 Viking landings on Mars has been — and continues to be — the golden era of space science.

This image of Curiosity,  which is now exploring an area that has been named Woodland Bay in Gale Crater, helps make the case.

Taken on May 31 by the HiRISE camera of NASA’s Mars Reconnaissance Orbiter (MRO), it shows the rover in a geological formation that holds remains of ancient clay.  This is important because clay can be hospitable to life, and Curiosity has already proven that Mars once had the water, organic compounds and early climate to support life.

The MRO orbits between 150 and 200 miles above Mars, so this detailed image is quite a feat.

The arm of the Curiosity rover examines the once-watery remains at Woodland Bay, Gale Crater. (NASA/JPL-Caltech)

Curiosity landed on Mars for what was planned as a mission of two years-plus. That was seven years ago this coming August.

The rover has had some ups and downs and has moved more slowly than planned, but it remains in motion — collecting paradigm-shifting information, drilling into the Mars surface, taking glorious images and making its way up the slopes of Gale Crater. … Read more

Methane on Mars. Here Today, Gone Tomorrow

On the 2,440th Martian day at Gale Crater, the Curiosity rover detected a large spike in the presence of the gas methane. It was by far the largest plume detected by the rover, and parallels an earlier ground-based discovery of an even larger plume of the gas.  (NASA, JPL-Caltech, MSSS)

The presence — and absence — of methane gas on Mars has been both very intriguing and very confusing for years.  And news coming out last week and then on Monday adds to this scientific mystery.

To the great surprise of the Curiosity rover team, their Sample Analysis on Mars instrument sent back a measurement of 21 parts per billion of methane on Thursday — by far the highest measurement since the rover landed at Gale Crater.

As Paul Mahaffy, principal investigator of the instrument that made the measurement, described it yesterday at a large astrobiology conference in Seattle, “We were dumbfounded.”

And then a few days later, all the methane was gone.   Mahaffy, and NASA headquarters, reported that the readings went down quickly to below 1 part per billion.

These perplexing findings are especially important because methane could — and also could not — be a byproduct of biology.  On Earth, more than 90 percent of methane is produced via biology.  On Mars — at this point, nobody knows.  But the question has certainly gotten scientists’ attention.

The most recent finding of a return to low methane levels suggests that last week’s methane detection was one of the transient methane plumes that have been observed in the past. While Curiosity scientists have noted background levels rise and fall seasonally, they haven’t found a pattern in the occurrence of these transient plumes.

“The methane mystery continues,” said Ashwin Vasavada, Curiosity’s project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California. “We’re more motivated than ever to keep measuring and put our brains together to figure out how methane behaves in the Martian atmosphere.”

This image was taken by the left Navcam on the Curiosity Mars rover on June 18, 2019, the day when a methane plume was detected.  It shows part of “Teal Ridge,” which the rover has been studying within a region called the “clay-bearing unit.” (NASA/JPL-Caltech)

The nature and size of this most recent methane plume will, by chance, be the most widely observed so far.

That’s because the Mars Express orbiter happened to be performing spot tracking observations at the Gale Crater right around the time Curiosity detected the methane spike. … Read more

Exoplanets With Complex Life May Be Very Rare, Even in Their “Habitable Zones”

The term “habitable zone” can be a misleading one, since it describes a limited number of conditions on a planet to make it hospitable to life. (NASA)


For years now, finding planets in the habitable zones of their host stars has been a global astrophysical quest and something of a holy grail.  That distance from a star where temperatures could allow H20 to remain liquid some of the time has been deemed the “Goldilocks” zone where life could potentially emerge and survive.

The term is valuable for sure, but many in the field worry that it can be as misleading or confusing as it is helpful.

Because while the habitable zone is a function of the physics and architecture of a solar system, so much more is needed to make a planet actually potentially habitable.  Does it have an atmosphere?  Does it have a magnetic field. Does it orbit on an elliptical path that takes it too far (and too close) to the sun?  Was it sterilized during the birth of the host star and orbiting planets?  What kind of star does it orbit, and how old and luminous is that star?

And then there’s the sometimes confused understanding that many habitable zones may well support complex, even technologically-advanced life.  They are, after all, habitable.

But as a new paper in the Astrophysical Journal makes clear, the likelihood of a habitable zone planet being able to support complex life — anything beyond a microbe — is significantly limited by the amount of toxic chemicals such as carbon monoxide and excesses of carbon dioxide.

Eddie Schwieterman, a NASA postdoc at the University of California, Riverside and lead author of the article, told me that the odds for complex life on most exoplanets in their habitable zones weren’t great.

“A rough estimate is between 10-20% of habitable zone planets are truly suitable for analogs to humans and animals.” he said. “Of course, being located in this part of the habitable zone isn’t enough by itself – you still need the build-up of oxygen via the evolution of oxygenic photosynthesis and certain planetary biogeochemical cycles.”


A rendering of the exoplanet Kepler 442 b, compared in size to  Earth.  Kepler 442 b was detected using the Kepler Space Telescope and is 0ne of a handful of planets found so far deemed to be most likely to be habitable. But it’s 1200 light-years away, so learning its secrets will be challenging.

Read more
« Older posts Newer posts »

© 2020 Many Worlds

Theme by Anders NorenUp ↑