Category: Featured (page 2 of 9)

An “Elegant” New Theory on How Earth Became a Wet Planet

About 71 percent of the Earth’s surface is covered by water, and vast quantities of water are also locked up in minerals on and beneath the surface.  This image of Earth comes from NASA’s Earth Polychromatic Imaging Camera (EPIC) on NOAA’s Deep Space Climate Observatory (DSCOVR), orbits Earth from a distance of about 1 million miles away. (NASA)

One of the enduring puzzles of our planet is why it is so wet.

Since Earth formed relatively close to the sun,  planetary scientists have generally held that any of the water in the building blocks of early-forming Earth was baked out and so was unavailable to make oceans or our atmosphere.

That led to theories explaining the oceans and wet atmosphere of Earth as a later addition, brought to us by meteorites and comets formed beyond the solar system’s so-called “snow line,” where volatile compounds such as water can begin to condense into ice.

This snow line is a general area between Mars and Jupiter, and that means under this theory that our water would have had to come from awfully far away.   Further complicating this view is that the isotopic makeup of that distant water ice is somewhat different from much of the water on Earth.

Now, a new paper in the journal Science from Laurette Piani of  the Université de Lorraine and colleagues, argues that Earth’s water was simply acquired like most other of our materials, through accretion when the planet formed in the inner solar nebula.

To reach that conclusion, the group re-examined 13 meteorites of the parched type formed between Earth and the sun, and they found more than of enough hydrogen present to explain how Earth got so wet (wet for our solar system, that is.)

In fact, they extrapolated from their data that enough water was available in the nebular cloud  that accompanied the formation of our sun and formed those early meteorites — called enstatite chondrites — to create three times as much water as our oceans hold.



New measurements of enstatite chondrites indicate that water could have been primarily acquired from Earth’s building blocks. Additional water was delivered to Earth’s early oceans and atmosphere by water-rich material from comets and the outer asteroid belt. (Science)

“Our discovery shows that the Earth’s building blocks might have significantly contributed to the Earth’s water and that hydrogen bearing material was present in the inner solar system at the time of the Earth and rocky planet formation, even though the temperatures were too high for water to condense,'” Piani told me.… Read more

Our Sun, as Never Seen Before

This animation shows a series of views of the sun captured with the Extreme Ultraviolet Imager (EUI) on ESA/NASA’s Solar Orbiter on May 30, 2020. They show the sun’s appearance at a wavelength of 17 nanometers, which is in the extreme ultraviolet region of the electromagnetic spectrum. Images at this wavelength reveal the upper atmosphere of the sun and the corona, which has a temperature of more than a million degrees. Solar Orbiter/EUI Team (ESA & NASA; CSL, IAS, MPS, PMOD/WRC, ROB, UCL/MSSL)

The first images of the sun from the European Space Agency/NASA’s Solar Orbiter have been released and are stupendous.  They are the closest photos ever taken of the star that we orbit, and have already revealed some fascinating features that nobody knew existed.

Launched early this year, the spacecraft completed its first close pass of the sun in mid-June and began sending back images and data.

“These amazing images will help scientists piece together the sun’s atmospheric layers, which is important for understanding how it drives space weather near the Earth and throughout the solar system.” aid Holly Gilbert, NASA project scientist for the mission at NASA’s Goddard Space Flight Center.

The orbiter has already found previously unknown found across the sun miniature versions of the gigantic solar flares that reach out far into space.  But these much smaller versions,  deemed to be “campfires,” are so far seen by not understood.

Normally, the first images from a spacecraft confirm the instruments are working; scientists don’t expect new discoveries from them. But the Extreme Ultraviolet Imager, or EUI, on Solar Orbiter returned data hinting at solar features never observed in such detail.

“The campfires we are talking about here are the little nephews of solar flares, at least a million, perhaps a billion times smaller,” said mission principal investigator David Berghmans an astrophysicist at the Royal Observatory of Belgium said.

“When looking at the new high resolution EUI images, they are literally everywhere we look.”

Solar Orbiter spots ‘campfires’ on the Sun. Locations of campfires are annotated with white arrows.

That the Solar Orbiter has been able to continue on its mission has been no simple feat.

The coronavirus forced mission control at the European Space Operations Center (ESOC) in Darmstadt, Germany to close down completely for more than a week. During commissioning, the period when each instrument is extensively tested, ESOC staff were reduced to a skeleton crew.… Read more

Standing on an Asteroid: Could the Future of Research and Education be Virtual Reality?

Scenes from the virtual reality talk on Hayabusa2 with students from the Yokohama International School. Each student has a robot avatar they can use to look around the scene, talk with other people and interact with objects. (OmniScope)

Have you ever wondered what it would be like to stand on an asteroid? A rugged terrain of boulders and craters beneath your feed, while the airless sky above you opens onto the star-spangled blackness of space.

It sounds like the opening scene for a science fiction movie. But this month, I met with students on the surface of an asteroid, all without leaving my living room.

The solution to this riddle —as you probably guessed from the title of this article— is virtual reality.

Virtual reality (or VR) allows you to enter a simulated environment. Unlike an image or even a video, VR allows you to look in all directions, move freely and interact with objects to create an immersive experience. An appropriate analogy would be to imagine yourself imported into a computer game.

It is therefore perhaps not surprise that a major application for VR has been the gaming industry. However, interest has recently grown in educational, research and training applications.

Discussing the Hayabusa2 mission in virtual reality. We began with a talk using slides and then went on to examine the spacecraft. (OmniScope)

The current global pandemic has forced everyone to seek online alternatives for their classes, business meetings and social interactions. But even before this year, the need for alternatives to in-person gatherings was increasing. International conferences are expensive on both the wallet and environment, and susceptible to political friction, all of which undermine the goal of sharing ideas within a field. Meanwhile, experiences such as planetariums and museums are limited in reach to people within comfortable traveling distance.

Standard solutions have included web broadcasts of talks, or interactive meetings via platforms such as Zoom or Google hangouts. But these fail to capture the atmosphere of post-talk discussions that are as productive in a conference as the talks themselves. Similarly, you cannot talk to people individually without arranging a separate meeting.

Virtual reality offers an alternative that is closer to the experience of in-person gatherings, and where disadvantages are off-set with opportunities impossible in a regular meeting.

Imagine teaching a class on the solar system, where you could move your classroom from the baked surface of Mercury, to the sulphuric clouds of Venus and onto the icy moons of Jupiter.… Read more

Viruses, the Virosphere and Astrovirology

An electron microscopic image of the 2019 novel coronavirus grown in cells at The University of Hong Kong.  Thin-section electron micrographs of the novel coronavirus show part of an infected cell, grown in a culture, with virus particles being released from the cell’s surface. (The University of Hong Kong)


When the word “virus” first came into use, it was as a “poison” and “a very small disease-causing agent.”  While the presence of viruses was theorized earlier, they were not fully identified until the 1890s.

So from their earliest discovery, viruses were synonymous with disease and generally of the ghastly epidemic type of disease we now see with coronavirus.  Few words carry such a negative punch.

Without in any way  minimizing the toll of viruses on humans (and apparently all other living things,) men and women who study viruses know that this association with disease is far too restrictive and misses much of what viruses do.  It’s perhaps not something to argue while a viral pandemic is raging, but that’s when the focus on viruses is most intense.

Here, then, is a broader look at what viruses do and have done — how they inflict pandemics but also have introduced genes that have led to crucial evolutionary advances, that have increased the once-essential ability of cyanobacteria in early Earth oceans to photosynthesize and produce oxygen, and that have greatly enhanced the immunity systems of everything they touch.  They — and the virosphere they inhabit — have been an essential agent of change.

Viruses are also thought to be old enough to have played a role — maybe a crucial role — in the origin of life, when RNA-like replicators outside cells may have been common and not just the domain of viruses.  This is why there is a school of thought that the study of viruses is an essential part of astrobiology and the search for the origins of life.  The field is called astrovirology.

Viruses are ubiquitous — infecting every living thing on Earth.

Virologists like to give this eye-popping sense of scale:  based on measurements of viruses in a liter of sea water, they calculate the number of viruses in the oceans of Earth to be 10 31.  That is 10 with 31 zeros after it.  If those viruses could be lined up, the scientists have calculated, they would stretch across the Milky Way 100 times.

“The vast majority of viruses don’t care about humans and have nothing to do with them,” said Rika Anderson,  who studies viruses around hydrothermal vents and teaches at Carleton College in Minnesota. … Read more

Exploring Our Sun Will Help Us Understand Habitability

The surface of the sun, with each “kernel” or “cell” roughly the size of Texas. The movie is made up of images produced by the Daniel Inouye SolarTelescope in Hawaii.  Novel and even revolutionary data and images are also expected from the Parker Solar Probe (which will travel into the sun’s atmosphere, or corona) and the just launched Solar Orbiter, which will study (among many other things) the sun’s polar regions. (NSO/NSF/AURA)


Scientists have been  studying our sun for centuries, and at this point know an awful lot about it — the millions of degrees Fahrenheit heat that it radiates out from the corona, the tangled and essential magnetic fields that it creates, the million-miles-per-hour solar wind and the charged high-energy solar particles that can be so damaging to anything alive.

But we have now entered a time when solar science is taking a major leap forward with the deployment of three pioneering instruments that will explore the sun and its surroundings as never before.  One is a space telescopes that will get closer to the sun (by far) than any probe before, another is a probe that will make the first observations of the sun’s poles, and the third is a ground-based solar telescope that can resolve the sun in radically new ways — as seen in the image above, released last month.

Together, NASA’s Parker Solar Probe, the joint European Space Agency-NASA Solar Orbiter mission and the National Science Foundation’s Inouye Solar Telescope on Hawai’i will provide pathways to understand some of the mysteries of the sun.  They include resolving practical issues involving the dynamics  of “space weather” that can harm astronauts and telecommunications systems, and larger theoretical unknowns related to all the material that stars scatter into space and onto planets.

Some of those unresolved questions include determining how and why heat and energy flow from the sun’s inner core to the outer corona and make it so much hotter, determining the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind, the make-up and effects of solar flares and coronal mass ejections, and how and why the sun is able to create and control the heliosphere — the vast bubble of charged particles blown by the solar wind into interstellar space.


An illustration of Kepler2-33b, , one of the youngest exoplanets detected to date using NASA Kepler Space Telescope.

Read more

Big News for SETI Enthusiasts

The CHIME telescope has detected a mysterious repeating radio signal far away in the cosmos – only the second ever identified of its kind.  CHIME is the Canadian Hydrogen Intensity Mapping Experiment (CHIME) is an interferometric radio telescope at the Dominion Radio Astrophysical Observatory in British Columbia, (Danielle Futselaar)

It has been almost 60 years now that scientists — a first a few intrepid souls and now many more — have been searching the skies for radio signals that just might be coming from other advanced, technological civilizations.  There have been some intriguing anomalies that created great interest, but nothing has to date survived further study.

But two recent developments in the this Search for Extraterrestrial Intelligence (SETI) make clear that the lack of alien signals so far has not diminished interest in the field and in the science and technology behind it.  Rather, SETI is alive and doing quite well.

A first sign is scientific and involves what are called “fast radio blasts” or FRBs — high energy pulses that are extremely short lived and, until recently, determined to be sporadic and random.  But a paper last week from a Canadian team reported a series fast radio blast from a galaxy a 500 million light-years away that appeared to be repeating about every 16 days.

The authors put forward a number of astrophysical explanations for this most unusual pattern and shied away from any kind of SETI hypothesis.  More on this later.

But the detection is the kind of radio signal anomaly that SETI scientists and enthusiasts are looking for.  And now they will also have the opportunity to search a vast new trove of data provided by Breakthrough Listen, part of the privately-funded Breakthrough Initiatives.

A sequence of 14 of the 15 fast radio bursts from FRB 121102, the first repeating fast radio burst to be identified, in 2018. The streaks across the colored energy plot are the bursts appearing at different times and different energies because of dispersion caused by 3 billion years of travel through intergalactic space. The bursts were captured in a broad bandwidth via the Breakthrough Listen backend instrument at the Green Bank Telescope. It does not repeat in patterns like the one just discovered by the Canadian team. (Berkeley News.)

At the close of a meeting of the American Association for the Advance of Science (AAAS) on Friday, the Breakthrough team announced the release nearly 2 petabytes (2 million gigabytes) of data, the second massive data dump from the four-year old Breakthrough Listen search for extraterrestrial intelligence

The data, most of it fresh from the telescope prior to detailed study by astronomers, comes from a survey of the radio spectrum between 1 and 12 gigahertz (GHz).… Read more

Exactly How Like Our Earth is an Earth-like Planet?

Explainer video for Earth-Like. (Vimeo edition with subtitles here)

Are we alone? The question hangs over each discovery of an Earth-sized planet as we speculate on its habitability. But how different and varied could these worlds really be? Perhaps the best way to get a flavor of this potential diversity is to build a few planets.

This is the idea behind Earth-Like: a website and twitter bot that lets you build your own Earth-like world. Earth-Like begins with a planet that resembles our Earth today, with oceans flowing over the surface and an atmosphere that maintains the global average temperature at a comfortable 15°C (59°F) on our orbit within the habitable zone. By making changes to the fraction of exposed land, the volcanic rate and position within the habitable zone, you can change the conditions on our planet into wildly different environments from desert to snowball.

Earth-Like can create a visualisation of what your planet might look like. This one is 91% covered with land, sitting in the middle of the habitable zone with 5 x the volcanic rate of Earth today! Its average temperature is about 9°C (48°F).

The concept for Earth-Like began during a workshop on planet diversity held at the Earth-Life Sciences Institute (ELSI) in Tokyo. The discussions highlighted that the potential for variation between rocky worlds is vast. A planet rich in carbon could have a mantle of diamond. A stagnant surface rather than mobile continental plates could throttle volcanism. The gravity on a large rocky planet might flatten the topology to allow shallow seas to cover all the land.

At the moment, observations can only tell us the physical size (either radius or mass) and the orbit of the majority of extrasolar planets. As we do not know what the surface of these worlds is like, we dub new discoveries Earth-like or potentially habitable if their size and the amount of radiation they receive from the star is similar to Earth. But this fails to convey how incredibly alien these worlds could be.

Earth-Like was spearheaded by undergraduate student, Kana Ishimaru, at the University of Tokyo (now a graduate student at the University of Arizona), working with myself, Julien Foriel (now a researcher at Harvard University) and Nicholas Guttenberg at ELSI. We wanted to build a model that would give a feel of the diversity of potentially habitable worlds and which could be run easily on a web browser.… Read more

Tales From the Deep Earth

Cross section of the varying layers of the Earth .  (Yuri Arcurs via Getty images)

When especially interesting new planets are discovered in the cosmos, scientists around the world begin the process of identifying their characteristics — their orbit, their mass and density,  their composition, their thermal properties and much more.  It’s all part of a drive that seems to be innate in humans to learn about the workings of the world (or worlds) around us.

This began millennia ago when our distant ancestors started to learn about the make-up and processes of Earth.   We now know enormous amounts about our planet, but I was recently introduced to a domain where our knowledge has some substantial holes.  The area of the Earth least well understood is, not surprisingly, what lies deep below us, in the mantle — the inner 2,900 kilometers (2000 miles) of the planet between the outer crust and the iron core.

The on-going exploration of this vast region — made up substances including some which cannot remain intact on the Earth’s surface — struck me as in some ways comparable to the study of exoplanets.   It’s also a realm where scientific observation is limited, but what knowledge is gained then leads through induction, deduction, modeling and exacting lab work to a gradual expansion back of our knowledge.

And in the case of some high-temperature, high-pressure minerals, this has led to a most unusual technique for identifying and naming key components of our inner planet.  Unable to reach or preserve some of the most important components of the mantle,  geochemists and other deep Earth scientists go to incoming meteorites to learn about what’s beneath (deeply beneath, that is) our feet.

With this in mind, here is a look at the discovery and recent naming of the mineral hiroseite, an unusual but quite widespread component of the very deep Earth.


ELSI director Kei Hirose has been honored for his pioneering work in identifying and describing components of the Earth’s lower mantle. In recognition of his work, a newly identified lower mantle mineral has been given the name of hiroseite. (Nerissa Escanlar)


It was two decades ago when Kei Hirose – a Japanese geochemist expert in high-pressure, deep-Earth phenomena, then at the Tokyo Institute of Technology – began researching a long-standing problem in understanding the working of the lower depths of our planet’s enormous mantle: the last 300 kilomiles above the boundary with the scalding iron core.

Read more

Using Climate Science on Earth to Understand Planets Beyond Earth

Climate expert Tony Del Genio has just retired after 41 years-plus at NASA’s Goddard Institute of Space Studies (GISS) in New York City. Here Del Genio is attending a Cubs game at Wrigley Field with (from the lower right) Dawn Gelino, Shawn Domogal-Goldman, Aaron Gronstal and Mary Voytek. All are part of the NASA NExSS initiative. (Dawn Gelino)

Anthony Del Genio started out his career expecting to become first an engineer and then a geophysicist.  He was in graduate school at UCLA and had been prepared by previous mentors to enter the geophysics field.  But a 1973 department-wide test focused on seismology, rather than fields that he understood better, and his days as a geophysicist were suddenly over.  Fortunately,  one of his professors saw that he had done very well in the planetary atmospheres and geophysical fluid dynamics sections of the exams, and suggested a change in focus.

That turned out to be a good thing for Del Genio, for the field of climate modeling, and for NASA. Because for the next four decades-plus, Del Genio has been an important figure in the field of climate science — first modeling cloud behavior and climate dynamics on Earth with ever more sophisticated atmospheric general circulation models (GCMs), and then beginning to do the same on planets beyond Earth.

His entry into the world of Venus, Saturn, Titan and distant exoplanets beyond is how I met Tony in 2015. At the same time that Many Worlds began as a column, Del Genio was named one of the founding leaders of the Nexus for Exoplanet System Science (NExSS) — the pioneering, interdisciplinary NASA initiative to bring together scientists working in the field of planetary habitability.  (NExSS also supports this column.)

Del Genio is a hard-driving scientist, but also has a self-deprecating and big-picture, poetic side.  This came across at our first diner breakfast together on Manhattan’s Upper West Side (where GISS is located), and was highlighted in a piece that Del Genio just wrote for a new series initiated by the American Geophysical Union (AGU),  Perspectives of Earth and Space Scientists.   In that series, scientists are asked to look back on their careers and write about their science and journeys.  Del Genio’s perspective is the first in this series, and I will reprint most of its bottom half because I found it so informative and interesting.

But first, a quote from Del Genio’s piece that sets the stage:  “The beauty of science, if we are patient, is that nature reveals its secrets little by little, slowly enough to keep us pressing forward for more but fast enough for us not to despair.”… Read more

How Long Were the Wet Periods on Early Mars, and Was That Water Chemically Suitable For Life?


An artist rendering, based on scientific findings, of Gale Crater in Mars during one of its ancient, wet periods. (NASA)

There is no doubt that early Mars had long period of warmer and much wetter climates before its atmosphere thinned too much to retain that liquid H20 on the surface.

As we know from the Curiosity mission to Gale Crater and other orbital findings, regions of that warmer and wetter Mars had flowing water and lakes periodically over hundreds of millions of years.  That’s one of the great findings of planetary science of our times.

But before approaching the question of whether that water could have supported life, a lot more needs to be known than that water was present.  We need answers to questions like how acidic or basic that water likely was?  Was it very salty? Did it have mineral and elemental contents that could provide energy to support any potential life?

And most especially, how long did those wet periods last, and the dry periods as well?

In a recent paper for Nature Communications, some more precise answers are put forward based on data collected at Gale Crater and interpreted based on geochemical modeling and Earth-based environmental science.

The water, say geochemist Yasuhito Sekine of the Earth-Life Science Institute (ELSI) in Tokyo and colleagues from the U.S. and Japan, had many important characteristics supportive of life.  It was only mildly salty, it had a near-neutral pH, it contained essential minerals and elements in state of disequilibrium — meaning that they could give and receive the electrons needed to provide life-supporting energy.   The  area was hardly lush — more like the semi-arid regions of Central Asia and Utah’s Great Salt Lake — but it contained water that was plausibly life supporting.

Based on an analysis of the patterns and quantities of salt remains, they estimate the water was present numerous times for between 10,000 to one million years each period.

Were those warm eras long enough for life to emerge, and the dry period short enough for it to survive?

“We don’t have a clear answer,” Sekine said. “But it is now more clear that the key question is which is more important:  the chemistry of the water or the duration of its presence?”

And the way to address the question, he said, is through a mix of planetary science and environmental science.

“This is a first step in the application of environmental chemistry to Mars,” Sekine said.… Read more

« Older posts Newer posts »

© 2021 Many Worlds

Theme by Anders NorenUp ↑