Category: Featured (page 1 of 7)

“Agnostic Biosignatures,” And the Path to Life as We Don’t Know It

Most research into signs of life in our solar system or on distant planets uses life on Earth as a starting point. But now NASA has begun a major project to explore the potential signs of life very different from what we have on Earth.  For example, groups of molecules, like those above, can be analyzed for complexity, regardless of their specific chemical constituents.  ( Brittany Klein/Goddard Space Flight Center)

Biosignatures – evidence that says or suggests that life has been present – are often very hard to find and interpret.

Scientists examining fossilized life on Earth can generally reach some sort of agreement about what is before them, but what about the soft-bodied or even single-celled organisms that were the sum total of life on Earth for much of the planet’s history as a living domain? Scientific disagreements are common.

Now think of trying to determine whether a particular outline on an ancient Martian rock, or a geochemical or surface anomaly on that rock, is a sign of life. Or perhaps an unexpected abundance of a particular compound in one of the water vapor plumes coming out of the moons Europa or Enceladus. Or a peculiar chemical imbalance in the atmosphere of a distant exoplanet as measured in the spectral signature collected via telescope.

These are long-standing issues and challenges, but they have taken on a greater urgency of late as NASA missions  (and those of other space agencies around the world) are being designed to actively look for signs of extraterrestrial life – most likely very simple life – past or present.

And that combination of increased urgency and great difficulty has given rise to at least one new way of thinking about those potential signs of life. Scientists call them “agnostic biosignatures” and they do not presuppose any particular biochemistry.

“The more we explore the solar system and distant exoplanets, the more we find worlds that are really foreign,”  said Sarah Stewart Johnson, at an assistant professor at Georgetown University and principal investigator of the newly-formed Laboratory for Agnostic Biosignatures (LAB).  The LAB team won a five-year, $7 million grant last year from NASA’s Astrobiology Program.

“So our goal is to go beyond our current understandings and find ways to explore the world of life as we don’t know it,” she told me.  “That might mean thinking about a spectrum of how ‘alive’ something might be… And we’re embracing uncertainty, looking as much for biohints as biosignatures.”

Johnson first visited the acid salt lakes of the Yilgarn Craton of Western Australia as a graduate student at MIT, and has returned multiple with colleagues to understand mineral biosignatures as well as biomarker preservation in this analog environment for early Mars.

Read more

Exoplanets Discoveries Flood in From TESS

NASA’s Transiting Exoplanet Survey Satellite (TESS) has hundreds of “objects of interest” waiting to be confirmed as planets in the data from the space telescope’s four cameras.  These three were the first confirmed TESS discoveries, identified last year during its first three months of observing. By the time the mission is done, TESS’s wide-field cameras will have covered the whole sky in search of transiting exoplanets around 200,000 of the nearest (and brightest) stars. (NASA / MIT / TESS)

The newest space telescope in the sky — NASA’s Transiting Exoplanet Survey Satellite, TESS — has been searching for exoplanets for less than a year, but already it has quite a collection to its name.

The TESS mission is to find relatively nearby planets orbiting bright and stable suns, and so expectations were high from the onset about the discovery of important new planets and solar systems.  At a meeting this week at the Massachusetts Institute of Technology devoted to TESS  results,  principal investigator George Ricker pronounced the early verdict.

The space telescope, he said,  “has far exceeded our most optimistic hopes.”  The count is up to 21 new planets and 850 additional  candidate worlds waiting to be confirmed.

Equally or perhaps more important is that the planets and solar systems being discovered promise important results.  They have not yet included any Earth-sized rocky planet in a sun’s habitable zone — what is generally considered the most likely, though hardly the only, kind of planet to harbor life — but they did include planets that offer a great deal when it comes to atmospheres and how they can be investigated.

This infographic illustrates key features of the TOI 270 system, located about 73 light-years away in the southern constellation Pictor. The three known planets were discovered by NASA’s Transiting Exoplanet Survey Satellite through periodic dips in starlight caused by each orbiting world. Insets show information about the planets, including their relative sizes, and how they compare to Earth. Temperatures given for TOI 270’s planets are equilibrium temperatures, (NASA’s Goddard Space Flight Center/Scott Wiessinger)

One of the newest three-planet system is called TOI-270, and it’s about 75 light years from Earth. The star at the center of the system is a red dwarf, a bit less than half the size of the sun.

Despite its small size, it’s brighter than most of the nearby stars we know host planets. And it’s stable, making its solar system especially valuable.

Read more

Curiosity Rover as Seen From High Above by Mars Orbiter

A camera on board NASA’s Mars Reconnaissance Orbiter recently spotted the Curiosity rover in Gale Crater.  The image is color-enhanced to allow surface features to become more visible. (NASA/JPL-Caltech)

This is Apollo memory month, when the 50th anniversary arrives of the first landing of astronauts on the moon.  It was a very big deal and certainly deserves attention and applause.

But there’s something unsettling about the anniversary as well, a sense that the human exploration side of NASA’s mission has disappointed and that its best days were many decades ago.   After all, it has been quite a few years now since NASA has been able to even get an astronaut to the International Space Station without riding in a Russian capsule.

There have been wondrous (and brave) NASA human missions since Apollo — the several trips to the Hubble Space Telescope for emergency repair and upgrade come to mind — but many people who equate NASA with human space exploration are understandably dismayed.

This Many Worlds column does not focus on human space exploration, but rather on the science coming from space telescopes, solar system missions, and the search for life beyond Earth.

And as I have argued before, the period that following the last Apollo mission and began with the 1976 Viking landings on Mars has been — and continues to be — the golden era of space science.

This image of Curiosity,  which is now exploring an area that has been named Woodland Bay in Gale Crater, helps make the case.

Taken on May 31 by the HiRISE camera of NASA’s Mars Reconnaissance Orbiter (MRO), it shows the rover in a geological formation that holds remains of ancient clay.  This is important because clay can be hospitable to life, and Curiosity has already proven that Mars once had the water, organic compounds and early climate to support life.

The MRO orbits between 150 and 200 miles above Mars, so this detailed image is quite a feat.

The arm of the Curiosity rover examines the once-watery remains at Woodland Bay, Gale Crater. (NASA/JPL-Caltech)

Curiosity landed on Mars for what was planned as a mission of two years-plus. That was seven years ago this coming August.

The rover has had some ups and downs and has moved more slowly than planned, but it remains in motion — collecting paradigm-shifting information, drilling into the Mars surface, taking glorious images and making its way up the slopes of Gale Crater. … Read more

Methane on Mars. Here Today, Gone Tomorrow

On the 2,440th Martian day at Gale Crater, the Curiosity rover detected a large spike in the presence of the gas methane. It was by far the largest plume detected by the rover, and parallels an earlier ground-based discovery of an even larger plume of the gas.  (NASA, JPL-Caltech, MSSS)

The presence — and absence — of methane gas on Mars has been both very intriguing and very confusing for years.  And news coming out last week and then on Monday adds to this scientific mystery.

To the great surprise of the Curiosity rover team, their Sample Analysis on Mars instrument sent back a measurement of 21 parts per billion of methane on Thursday — by far the highest measurement since the rover landed at Gale Crater.

As Paul Mahaffy, principal investigator of the instrument that made the measurement, described it yesterday at a large astrobiology conference in Seattle, “We were dumbfounded.”

And then a few days later, all the methane was gone.   Mahaffy, and NASA headquarters, reported that the readings went down quickly to below 1 part per billion.

These perplexing findings are especially important because methane could — and also could not — be a byproduct of biology.  On Earth, more than 90 percent of methane is produced via biology.  On Mars — at this point, nobody knows.  But the question has certainly gotten scientists’ attention.

The most recent finding of a return to low methane levels suggests that last week’s methane detection was one of the transient methane plumes that have been observed in the past. While Curiosity scientists have noted background levels rise and fall seasonally, they haven’t found a pattern in the occurrence of these transient plumes.

“The methane mystery continues,” said Ashwin Vasavada, Curiosity’s project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California. “We’re more motivated than ever to keep measuring and put our brains together to figure out how methane behaves in the Martian atmosphere.”

This image was taken by the left Navcam on the Curiosity Mars rover on June 18, 2019, the day when a methane plume was detected.  It shows part of “Teal Ridge,” which the rover has been studying within a region called the “clay-bearing unit.” (NASA/JPL-Caltech)

The nature and size of this most recent methane plume will, by chance, be the most widely observed so far.

That’s because the Mars Express orbiter happened to be performing spot tracking observations at the Gale Crater right around the time Curiosity detected the methane spike. … Read more

Exoplanets With Complex Life May Be Very Rare, Even in Their “Habitable Zones”

The term “habitable zone” can be a misleading one, since it describes a limited number of conditions on a planet to make it hospitable to life. (NASA)

 

For years now, finding planets in the habitable zones of their host stars has been a global astrophysical quest and something of a holy grail.  That distance from a star where temperatures could allow H20 to remain liquid some of the time has been deemed the “Goldilocks” zone where life could potentially emerge and survive.

The term is valuable for sure, but many in the field worry that it can be as misleading or confusing as it is helpful.

Because while the habitable zone is a function of the physics and architecture of a solar system, so much more is needed to make a planet actually potentially habitable.  Does it have an atmosphere?  Does it have a magnetic field. Does it orbit on an elliptical path that takes it too far (and too close) to the sun?  Was it sterilized during the birth of the host star and orbiting planets?  What kind of star does it orbit, and how old and luminous is that star?

And then there’s the sometimes confused understanding that many habitable zones may well support complex, even technologically-advanced life.  They are, after all, habitable.

But as a new paper in the Astrophysical Journal makes clear, the likelihood of a habitable zone planet being able to support complex life — anything beyond a microbe — is significantly limited by the amount of toxic chemicals such as carbon monoxide and excesses of carbon dioxide.

Eddie Schwieterman, a NASA postdoc at the University of California, Riverside and lead author of the article, told me that the odds for complex life on most exoplanets in their habitable zones weren’t great.

“A rough estimate is between 10-20% of habitable zone planets are truly suitable for analogs to humans and animals.” he said. “Of course, being located in this part of the habitable zone isn’t enough by itself – you still need the build-up of oxygen via the evolution of oxygenic photosynthesis and certain planetary biogeochemical cycles.”

 

A rendering of the exoplanet Kepler 442 b, compared in size to  Earth.  Kepler 442 b was detected using the Kepler Space Telescope and is 0ne of a handful of planets found so far deemed to be most likely to be habitable. But it’s 1200 light-years away, so learning its secrets will be challenging.

Read more

A Magical Solar Eclipse From 1900, Recovered and Instructive

 

Sometimes relics from the past help put the present into better focus.

Recovered footage of a 1900 total eclipse of the sun — believed to be the first captured — has been scanned, restored and then reassembled and retimed frame by frame to create a memorable and kind of spooky look at early astronomy. The film was found at the Royal Astronomical Society in London, reconstructed by the British Film Institute and made public this week.

As explained in a release from the two societies, the film was taken by one Nevil Maskelyne, a British magician, card sharp, levitator and more turned pioneering filmmaker and astronomer.

The eclipse was captured during an expedition to North Carolina with the British Astronomical Association.  As the release explained, at the time magic, the paranormal and science often fit comfortably together, and the emerging film industry was a tool for all and an instigator of invention.

“It was not an easy feat to film,” the release reports. “Maskelyne had to make a special telescopic adapter for his camera to capture the event. ”

The North Carolina expedition was Maskelyne’s second attempt to film a solar eclipse, but the only one to have survived — though it was also considered lost for decades.  He also had traveled to India in 1898 to photograph the phenomenon and apparently succeeded, though his film can was said to be stolen on the way home.

 

Light curve of star as an exoplanet transits between it and an observing telescope.

 

Compelling on its own, the footage also conveniently provides an exaggerated and instructive example of the primary technique now used to discover distant exoplanets: the “transit” method invented a century after Maskelyne filmed his eclipse.

But unlike what occurs a full solar eclipse,  when the moon blots out the sun as viewed from Earth,  the transit method measures the light from a host star to determine whether it dips ever so slightly — a sign that a planet is blocking some of the star’s light.

There are, of course, no total eclipses from transiting exoplanets because the planets are so much smaller than the suns.  But you get the idea.

You perhaps also get the idea that there has long been a certain showmanship in the display of astronomical wonders.  Space agencies certainly understand that and — with some turning of the nobs to make astronomical phenomenon appear in ways our eyes can take them in most dramatically  — have created some of the most majestic and magical images of our times.… Read more

NExSS 2.0

Finding new worlds can be an individual effort, a team effort, an institutional effort. The same can be said for characterizing exoplanets and understanding how they are affected by their suns and other planets in their solar systems. When it comes to the search for possible life on exoplanets, the questions and challenges are too great for anything but a community. NASA’s NExSS initiative has been an effort to help organize, cross-fertilize and promote that community. This artist’s concept Kepler-47, the first two-star systems with multiple planets orbiting the two suns, suggests just how difficult the road ahead will be. ( NASA/JPL-Caltech/T. Pyle)

 

The Nexus for Exoplanet System Science, or “NExSS,”  began four years ago as a NASA initiative to bring together a wide range of scientists involved generally in the search for life on planets outside our solar system.

With teams from seventeen academic and NASA centers, NExSS was founded on the conviction that this search needed scientists from a range of disciplines working in collaboration to address the basic questions of the fast-growing field.

Among the key goals:  to investigate just how different, or how similar, different exoplanets are from each other; to determine what components are present on particular exoplanets and especially in their atmospheres (if they have one);  to learn how the stars and neighboring exoplanets interact to support (or not support) the potential of life;  to better understand how the initial formation of planets affects habitability, and what role climate plays as well.

Then there’s the  question that all the others feed in to:  what might scientists look for in terms of signatures of life on distant planets?

Not questions that can be answered alone by the often “stove-piped” science disciplines — where a scientist knows his or her astrophysics or geology or geochemistry very well, but is uncomfortable and unschooled in how other disciplines might be essential to understanding the big questions of exoplanets.

 

The original NExSS team was selected from groups that had won NASA grants and might want to collaborate with other scientists with overlapping interests and goals  but often from different disciplines. (NASA)

The original idea for this kind of interdisciplinary group came out of NASA’s Astrobiology Program, and especially from NASA astrobiology director Mary Voytek and colleague Shawn Domogal-Goldman of the Goddard Space Flight Center, as well as Doug Hudgins of NASA Astrophysics.  It was something of a gamble, since scientists who joined would essentially volunteer their time and work and would be asked to collaborate with other scientists in often new ways.… Read more

Great Nations Need Great Observatories

This new image from NASA’s Hubble Space Telescope, shows the tentacled Southern Crab Nebula. The nebula, officially known as Hen 2-104, appears to have two nested hourglass-shaped structures that were sculpted by a whirling pair of stars in a binary system. The duo consists of an aging red giant star and a burned-out star, a white dwarf. The red giant is shedding its outer layers and some of this ejected material is attracted by the gravity of the companion white dwarf. The result is that both stars are embedded in a flat disk of gas stretching between them. This belt of material constricts the outflow of gas so that it only speeds away above and below the disk. The result is an hourglass-shaped nebula. The bubbles of gas and dust appear brightest at the edges, giving the illusion of crab leg structures. These “legs” are likely to be the places where the outflow slams into surrounding interstellar gas and dust, or possibly material which was earlier lost by the red giant star.  (NASA and ESA)

The Hubble Space Telescope, arguably the jewel in the crown of NASA’s science missions, was launched 29 years ago.  It has been providing scientists and the public with a steady stream of previously unimagined insights about the cosmos — plus those jaw-dropping, very high-resolution images like the one above — pretty much ever since.

It has also provided the best example to date of what humans can do in space with its five repair and upgrade missions.  It did indeed launch to great skepticism, especially after a near fatal flaw was found in its key mirror.  It was also considered over budget at launch, way behind schedule and questionable scientifically and had to be fixed in orbit 353 miles into space.

The Hubble Space Telescope after its second repair and upgrade mission in 1998. (NASA)

But almost three decades into its mission now — and with decades more service likely — it clearly shows what an exceedingly ambitious project can deliver and the level of excellence that NASA, its European Space Agency partner and space scientists and engineers can achieve.  Talk about soft power.

This is important to remember as the agency’s 40-year-old Great Observatories program –that the Hubble Telescope is a part of –is under considerable threat.

The mission that was supposed to fly in the 2010s, the James Webb Space Telescope, is also way over budget, way behind schedule, and now described as a financial threat to other NASA missions. … Read more

The “Twin Study,” and What it Does and Does Not Say About The Health Hazards of Space Travel

Buzz Aldrin on the moon in 1969, photographed by first-on-the-moon astronaut Neil Armstrong (NASA)

 

When Buzz Aldrin became the second man to ever walk on the moon, his lunar escapades, along with those of Neil Armstrong,  were a cause of national and pretty much global joy, wonder and pride.   That the mission was hazardous was self-evident — from launch to the ad-lib and hair-raising landing on the moon, to return to Earth– but the nation and certainly the astronauts were more than ready to take the risk.

A half century later, Armstrong has passed (at 82 from complication of cardiac surgery)  but Aldrin is still writing books and proposing plans to reach Mars. Their time in space may well have changed their lives and views of the world, but it did not seem to affect their basic health.

But the two were in space for only eight days and so were not exposed to the long-term effects of solar radiation, microgravity and isolation that are now under intense study.  Because the next generation of astronauts who may be going to the moon and beyond will be going for much longer periods of time and so will face a wide range of potential problems that weren’t considered major issues in Apollo or even later days.

Much has been learned since Apollo, however, and some of it raises new risks and new problems.  And that’s why the just-released Twin Study of the health comparison of long-staying International Space Station astronaut Scott Kelly and his ground-based twin brother Mark Kelly has been eagerly awaited.

Now that we know somewhat better what to look for in terms of more subtle damage that can come from long stays in space, what are the dangers and how serious are they?

Identical twins, Scott and Mark Kelly, are the subjects of NASA’s Twins Study. Scott (left) spent a year in space while Mark (right) stayed on Earth as a control subject.  It was Scott Kelly’s idea to have he and his (former astronaut) brother serve as subjects of the extensive research into the effects of space travel on the human body. (NASA)

“Given that the majority of the biological and human health variables remained stable, or returned to baseline, after a 340-dayspace mission, these data suggest that human health can be mostly sustained over this duration of spaceflight,”  the study concludes.

Published in Science, the intensive study was led by Francine E.… Read more

How Creatures End Up Miles Below the Surface of Earth, and Maybe Mars Too

Poikilolaimus oxycercus is a microscopic nematode, or roundworm, found alive and well more than a mile below the surface in South Africa, where its ancestors had lived for hundreds or thousands of years. (Gaetan Borgonie)

 

When scientists speculate about possible life on Mars, they generally speak of microbial or other simple creatures living deep below the irradiated and desiccated surface.  While Mars long ago had a substantial period that was wetter and warmer when it also had a far more protective atmosphere,  the surface now is considered to be lethal.

But the suggestion that some potential early Martian life could have migrated into the more protected depths is often discussed as a plausible, if at this point untestable possibility.  In this scenario, some of that primitive subsurface life might even have survived the eons in their buried, and protected, environments.

This thinking has gotten some support in the past decade with the discovery of bacteria and nematodes (roundworms) found as far down as three miles below the surface of South Africa, in water dated as being many thousands or millions years old.  The lifeforms have been discovered by a team that has regularly gone down into the nation’s super-hot gold and platinum mines to search for life coming out of boreholes in the rock face of deep mine tunnels.

 

Borgonie setting up a water collector for a borehole at the Driefontein mine in the Witwatersrand Basin  of South Africa.  He said he stopped counting his journeys into the deep mines at 50, but that the number now is much higher. (Courtesy of Borgonie)

Now a  new paper describes not only the discovery of additional deep subsurface life, but also tries to explain how the distant ancestors of the worms and bacteria and algae might have gotten there. 

Their conclusion:  many were pulled down when fractures opened in the aftermath of earthquakes and other seismic events.  While many lifeforms were swept down, only a small percentage were able to adapt, evolve and thus survive.

The is how Gaetan Borgonie, lead author of the paper in Scientific Reports, explained it to me via email:

“After the discovery of multicellular animals in the deep subsurface up to 3.8 km (2.5 miles) in South Africa everyone was baffled and asked the question how did they get that deep? This question more or less haunted us for more than a decade as we were unable to get our head around it.Read more

« Older posts

© 2019 Many Worlds

Theme by Anders NorenUp ↑