Category: Featured (page 1 of 6)

The “Twin Study,” and What it Does and Does Not Say About The Health Hazards of Space Travel

Buzz Aldrin on the moon in 1969, photographed by first-on-the-moon astronaut Neil Armstrong (NASA)

 

When Buzz Aldrin became the second man to ever walk on the moon, his lunar escapades, along with those of Neil Armstrong,  were a cause of national and pretty much global joy, wonder and pride.   That the mission was hazardous was self-evident — from launch to the ad-lib and hair-raising landing on the moon, to return to Earth– but the nation and certainly the astronauts were more than ready to take the risk.

A half century later, Armstrong has passed (at 82 from complication of cardiac surgery)  but Aldrin is still writing books and proposing plans to reach Mars. Their time in space may well have changed their lives and views of the world, but it did not seem to affect their basic health.

But the two were in space for only eight days and so were not exposed to the long-term effects of solar radiation, microgravity and isolation that are now under intense study.  Because the next generation of astronauts who may be going to the moon and beyond will be going for much longer periods of time and so will face a wide range of potential problems that weren’t considered major issues in Apollo or even later days.

Much has been learned since Apollo, however, and some of it raises new risks and new problems.  And that’s why the just-released Twin Study of the health comparison of long-staying International Space Station astronaut Scott Kelly and his ground-based twin brother Mark Kelly has been eagerly awaited.

Now that we know somewhat better what to look for in terms of more subtle damage that can come from long stays in space, what are the dangers and how serious are they?

Identical twins, Scott and Mark Kelly, are the subjects of NASA’s Twins Study. Scott (left) spent a year in space while Mark (right) stayed on Earth as a control subject.  It was Scott Kelly’s idea to have he and his (former astronaut) brother serve as subjects of the extensive research into the effects of space travel on the human body. (NASA)

“Given that the majority of the biological and human health variables remained stable, or returned to baseline, after a 340-dayspace mission, these data suggest that human health can be mostly sustained over this duration of spaceflight,”  the study concludes.

Published in Science, the intensive study was led by Francine E.… Read more

How Creatures End Up Miles Below the Surface of Earth, and Maybe Mars Too

Poikilolaimus oxycercus is a microscopic nematode, or roundworm, found alive and well more than a mile below the surface in South Africa, where its ancestors had lived for hundreds or thousands of years. (Gaetan Borgonie)

 

When scientists speculate about possible life on Mars, they generally speak of microbial or other simple creatures living deep below the irradiated and desiccated surface.  While Mars long ago had a substantial period that was wetter and warmer when it also had a far more protective atmosphere,  the surface now is considered to be lethal.

But the suggestion that some potential early Martian life could have migrated into the more protected depths is often discussed as a plausible, if at this point untestable possibility.  In this scenario, some of that primitive subsurface life might even have survived the eons in their buried, and protected, environments.

This thinking has gotten some support in the past decade with the discovery of bacteria and nematodes (roundworms) found as far down as three miles below the surface of South Africa, in water dated as being many thousands or millions years old.  The lifeforms have been discovered by a team that has regularly gone down into the nation’s super-hot gold and platinum mines to search for life coming out of boreholes in the rock face of deep mine tunnels.

 

Borgonie setting up a water collector for a borehole at the Driefontein mine in the Witwatersrand Basin  of South Africa.  He said he stopped counting his journeys into the deep mines at 50, but that the number now is much higher. (Courtesy of Borgonie)

Now a  new paper describes not only the discovery of additional deep subsurface life, but also tries to explain how the distant ancestors of the worms and bacteria and algae might have gotten there. 

Their conclusion:  many were pulled down when fractures opened in the aftermath of earthquakes and other seismic events.  While many lifeforms were swept down, only a small percentage were able to adapt, evolve and thus survive.

The is how Gaetan Borgonie, lead author of the paper in Scientific Reports, explained it to me via email:

“After the discovery of multicellular animals in the deep subsurface up to 3.8 km (2.5 miles) in South Africa everyone was baffled and asked the question how did they get that deep? This question more or less haunted us for more than a decade as we were unable to get our head around it.Read more

All About Emergence

A swarm of birds act as an emergent whole as opposed to a collection of individual birds. The workings of swarms have been fruitfully studied by artificial life scientists, who look for abstracted insights into life via computers and other techniques. (Walerian Walawski)

 

If there was a simple meaning of the often-used scientific term “emergence,” then 100-plus scientists wouldn’t have spent four days presenting, debating and not infrequently disagreeing about what it was.

But as last month’s organizers of the Earth-Life Science Institute’s “Comparative Emergence” symposium in Tokyo frequently reminded the participants, those debates and disputes are perfectly fine and to be expected given the very long history and fungibility of the concept.

At the same time, ELSI leaders also clearly thought that the term can have resonance and importance in many domains of science, and that’s why they wanted practitioners to be exposed more deeply to its meanings and powers.

Emergence is a concept commonly used in origins of life research, in complexity and artificial life science; less commonly in chemistry, biology, social and planetary sciences; and — originally – in philosophy. And in the 21st century, it is making a significant comeback as a way to think about many phenomena and processes in the world.

So what is “emergence?” Most simply, it describes the ubiquitous and hugely varied mechanisms by which simple components in nature (or in the virtual or philosophical world) achieve more complexity, and in the process become greater than the sum of all those original parts.

The result is generally novel, often surprising, and sometimes most puzzling – especially since emergent phenomena involve self-organization by the more complex whole.

Think of a collection of ants or bees and how they join leaderless by the many thousands to make something – a beehive, an ant colony – that is entirely different from the individual creatures.

 

The Eagle nebula is an intense region of star formation, an emergent phenomenon
that clearly creates something novel out of simpler parts. (European Space Observatory.)

Think of the combination of hydrogen and oxygen gases which make liquid water. Think of the folding of proteins that makes genetic information transfer possible. Think of the processes by which bits of cosmic dust clump and clump and clump millions of times over and in time become a planetesimal or perhaps a planet. Think of how the firing of the billions of neurons in your brain results in consciousness.Read more

The Gale Winds of Venus Suggest How Locked Exoplanets Could Escape a Fate of Extreme Heat and Brutal Cold

Two images of the nightside of Venus captured by the IR2 camera on the Akatsuki orbiter in September 2016 (JAXA).

 

More than two decades before the first exoplanet was discovered, an experiment was performed using a moving flame and liquid mercury that could hold the key to habitability on tidally locked worlds.

The paper was published in a 1969 edition of the international journal, Science, by researchers Schubert and Whitehead. The pair reported that when a Bunsen flame was rotated beneath a cylindrical container of mercury, the liquid began to flow around the container in the opposite direction at speeds up to four times greater than the rotation of the flame. The scientists speculated that such a phenomenon might explain the rapid winds on Venus.

On the Earth, the warm equator and cool poles set up a pressure difference that creates our global winds. These winds are deflected westward by the rotation of the planet (the so-called Coriolis force) promoting a zonal (east-west) air flow around the globe. But what would happen if our planet’s rotation slowed? Would our winds just cycle north and south between the equator and poles?

The Moon is tidally locked to the Earth, so only one hemisphere is visible from our planet (Smurrayinchester / wikipedia commons).

Such a slow-rotating scenario may be the lot of almost all rocky exoplanets discovered to date. Planets such as the TRAPPIST-1 system and Proxima Centauri-b all orbit much closer to their star than Mercury, making their faint presence easier to detect but likely resulting in tidal lock. Like the moon orbiting the Earth, planets in tidal lock have one side permanently facing the star, creating a day that is equal to the planet’s year.

The dim stars orbited by these planets can mean they receive a similar level of radiation as the Earth, placing them within the so-called “habitable zone.” However, tidal lock comes with the risk of horrific atmospheric collapse. On the planet side perpetually facing away from the star, temperatures can drop low enough to freeze an Earth-like atmosphere. The air from the dayside would then rush around the planet to fill the void, freezing in turn and causing the planet to lose its atmosphere even within the habitable zone.

The only way this could be prevented is if winds circulating around the planet could redistribute the heat sufficiently to prevent freeze-out. But without a strong Coriolis force from the planet’s rotation, can such winds exist?… Read more

Artifacts In Space

Voyager 2 entered interstellar space last month, becoming a space “artifact” of our civilization. (NASA)

 

All of a sudden, we have spacecraft and objects both coming into our solar system and leaving for interstellar space. This is highly unusual, and very intriguing.

The departing spacecraft is Voyager 2, which launched in 1977 and has traveled spaceward some 11 billion miles.  It has now officially left the heliosphere, the protective bubble of particles and magnetic fields created by the sun.  In this it follows Voyager I – which left our solar system in 2012 — and managers of the two craft have reason to think they can travel until they cross the half-century mark.

This is taking place the same time that scientists are puzzling over the nature of a cigar-shaped object that flew into the solar system from interstellar space last year.

Nobody knows what the object – called Oumuamua, Hawaiian for “first messenger,” or “scout” – really is. The more likely possibilities of it being a comet or an solar system asteroid have been found to be inconsistent with some observed properties of the visitor, and this has led some senior scientists to even hypothesize that it just might be an alien probe.

The likelihood may be small, but it was substantial enough for Harvard University Astronomy Department Chairman Avi Loeb to co-author a paper presenting the possibility.  In the Astrophysical Journal Letters, Loeb and postdoc Shmuel Bialy wrote that the object “may be a fully operational probe sent intentionally to Earth vicinity by an alien civilization.”

They also say the object has some characteristics of a “lightsail of artificial origins,” rather like the one that Loeb is working on as chairman of the Breakthrough Starshot advisory committee.  The well-funded private effort is hoping to develop ways to send a fleet of tiny lightsail probes to the star system nearest to us, Alpha Centauri.

 

This artist’s impression of the first detected interstellar visitor: Oumuamua. This object was discovered in October 2017 by the Pan-STARRS 1 telescope in Hawaii. Subsequent observations from ESO’s Very Large Telescope in Chile and other observatories around the world show that it was traveling through space for millions of years before its seemingly chance encounter with our star system.  But some scientists wonder:  might it be instead a probe sent into the cosmos by intelligent creatures?(NASA)

 

Put the two phenomenon together — the coming into our solar system and the going out — and you have a pathway into the world of alien “artifacts,” products of civilizations near and far. … Read more

The Kepler Space Telescope Mission Is Ending But Its Legacy Will Keep Growing.

An illustration of the Kepler Space Telescope, which is on its very last legs.  As of October 2018, the planet-hunting spacecraft has been in space for nearly a decade. (NASA via AP)

 

The Kepler Space Telescope is dead.  Long live the Kepler.

NASA officials announced on Tuesday that the pioneering exoplanet survey telescope — which had led to the identification of almost 2,700 exoplanets — had finally reached its end, having essentially run out of fuel.  This is after nine years of observing, after a malfunctioning steering system required a complex fix and change of plants, and after the hydrazine fuel levels reached empty.

While the sheer number of exoplanets discovered is impressive the telescope did substantially more:  it proved once and for all that the galaxy is filled with planets orbiting distant stars.  Before Kepler this was speculated, but now it is firmly established thanks to the Kepler run.

It also provided data for thousands of papers exploring the logic and characteristics of exoplanets.  And that’s why the Kepler will indeed live long in the world of space science.

“As NASA’s first planet-hunting mission, Kepler has wildly exceeded all our expectations and paved the way for our exploration and search for life in the solar system and beyond,” said Thomas Zurbuchen, associate administrator of NASA’s Science Mission Directorate in Washington.

“Not only did it show us how many planets could be out there, it sparked an entirely new and robust field of research that has taken the science community by storm. Its discoveries have shed a new light on our place in the universe, and illuminated the tantalizing mysteries and possibilities among the stars.”

 

 


The Kepler Space Telescope was focused on hunting for planets in this patch of the Milky Way. After two of its four spinning reaction wheels failed, it could no longer remain steady enough to stare that those distant stars but was reconfigured to look elsewhere and at a different angle for the K2 mission. (Carter Roberts/NASA)

 

Kepler was initially the unlikely brainchild of William Borucki, its founding principal investigator who is now retired from NASA’s Ames Research Center in California’s Silicon Valley.

When he began thinking of designing and proposing a space telescope that could potentially tell us how common distant exoplanets were — and especially smaller terrestrial exoplanets like Earth – the science of extra solar planets was at a very different stage.… Read more

Technosignatures and the Search for Extraterrestrial Intelligence

A rendering of a potential Dyson sphere, named after Freeman A. Dyson. As proposed by the physicist and astronomer decades ago, they would collect solar energy on a solar system wide scale for highly advanced civilizations. (SentientDevelopments.com)

The word “SETI” pretty much brings to mind the search for radio signals come from distant planets, the movie “Contact,” Jill Tarter, Frank Drake and perhaps the SETI Institute, where the effort lives and breathes.

But there was a time when SETI — the Search for Extraterrestrial Intelligence — was a significantly broader concept, that brought in other ways to look for intelligent life beyond Earth.

In the late 1950s and early 1960s — a time of great interest in UFOs, flying saucers and the like — scientists not only came up with the idea of searching for distant intelligent life via unnatural radio signals, but also by looking for signs of unexpectedly elevated heat signatures and for optical anomalies in the night sky.

The history of this search has seen many sharp turns, with radio SETI at one time embraced by NASA, subsequently de-funded because of congressional opposition, and then developed into a privately and philanthropically funded project of rigor and breadth at the SETI Institute.  The other modes of SETI went pretty much underground and SETI became synonymous with radio searches for ET life.

But this history may be about to take another sharp turn as some in Congress and NASA have become increasingly interested in what are now called “technosignatures,” potentially detectable signatures and signals of the presence of distant advanced civilizations.  Technosignatures are a subset of the larger and far more mature search for biosignatures — evidence of microbial or other primitive life that might exist on some of the billions of exoplanets we now know exist.

And as a sign of this renewed interest, a technosignatures conference was scheduled by NASA at the request of Congress (and especially retiring Republican Rep. Lamar Smith of Texas.)  The conference took place in Houston late last month, and it was most interesting in terms of the new and increasingly sophisticated ideas being explored by scientists involved with broad-based SETI.

“There has been no SETI conference this big and this good in a very long time,” said Jason Wright, an astrophysicist and professor at Pennsylvania State University and chair of the conference’s science organizing committee.  “We’re trying to rebuild the larger SETI community, and this was a good start.”

 

At this point, the search for technosignatures is often likened to that looking for a needle in a haystack.

Read more

15,000 Galaxies in One Image

Astronomers have just assembled one of the most comprehensive portraits yet of the universe’s evolutionary history, based on a broad spectrum of observations by the Hubble Space Telescope and other space and ground-based telescopes.  Each of the approximately 15,000 specks and spirals are galaxies, widely distributed in time and space. (NASA, ESA, P. Oesch of the University of Geneva, and M. Montes of the University of New South Wales)

Here’s an image to fire your imagination: Fifteen thousand galaxies in one picture — sources of light detectable today that were generated as much as 11 billion years ago.

Of those 15,000 galaxies, some 12,000 are inferred to be in the process of forming stars.  That’s hardly surprising because the period around 11 billions years ago has been determined to be the prime star-forming period in the history of the universe.  That means for the oldest galaxies in the image, we’re seeing light that left its galaxy but three billion years after the Big Bang.

This photo mosaic, put together from images taken by the Hubble Space Telescope and other space and ground-based telescopes, does not capture the earliest galaxies detected. That designation belongs to a galaxy found in 2016 that was 420 million years old at the time it sent out the photons just collected. (Photo below.)

Nor is it quite as visually dramatic as the iconic Ultra Deep Field image produced by NASA in 2014. (Photo below as well.)

But this image is one of the most comprehensive yet of the history of the evolution of the universe, presenting galaxy light coming to us over a timeline up to those 11 billion years.  The image was released last week by NASA and supports an earlier paper in The Astrophysical Journal by Pascal Oesch of Geneva University and a large team of others.

And it shows, yet again, the incomprehensible vastness of the forest in which we are a tiny leaf.

Some people apparently find our physical insignificance in the universe to be unsettling.  I find it mind-opening and thrilling — that we now have the capability to not only speculate about our place in this enormity, but to begin to understand it as well.

The Ultra-Deep field composite, which contains approximately 10,000 galaxies.  The images were collected over a nine-year period.  {NASA, ESA, H. Teplitz and M. Rafelski (IPAC/Caltech), A. Koekemoer (STScI), R. Windhorst (Arizona State University), and Z.

Read more

A New Frontier for Exoplanet Hunting

The spectrum from the newly-assembled EXtreme PREcision Spectrometer (EXPRES)  shines on Yale astronomy professor Debra Fischer, who is principal investigator of the project. The stated goal of EXPRES is to find many Earth-size planets via the radial velocity method — something that has never been done. (Ryan Blackman/Yale)

 

The first exoplanets were all found using the radial velocity method of measuring the “wobble” of a star — movement caused by the gravitational pull of an orbiting planet.

Radial velocity has been great for detecting large exoplanets relatively close to our solar system, for assessing their mass and for finding out how long it takes for the planet to orbit its host star.

But so far the technique has not been able to identify and confirm many Earth-sized planets, a primary goal of much planet hunting.  The wobble caused by the presence of a planet that size has been too faint to be detected by current radial velocity instruments and techniques.

However, a new generation of instruments is coming on line with the goal of bringing the radial velocity technique into the small planet search.  To do that, the new instruments, together with their telescopes. must be able to detect a sun wobble of 10 to 20 centimeters per second.  That’s quite an improvement on the current detection limit of about one meter per second.

At least three of these ultra high precision spectrographs (or sometimes called spectrometers) are now being developed or deployed.  The European Southern Observatory’s ESPRESSO instrument has begun work in Chile; Pennsylvania State University’s NEID spectrograph (with NASA funding) is in development for installation at the Kitt Peak National Observatory in Arizona; and the just-deployed EXPRES spectrograph put together by a team led by Yale University astronomers (with National Science Foundation support) is in place at the Lowell Observatory outside of Flagstaff, Arizona.

The principal investigator of EXPRES, Debra Fischer, attended the recent University of Cambridge Exoplanets2 conference with some of her team, and there I had the opportunity to talk with them. We discussed the decade-long history of the instrument, how and why Fischer thinks it can break that 1-meter-per-second barrier, and what it took to get it attached and working.

 

This animation shows how astronomers use very precise spectrographs to find exoplanets. As the planet orbits its gravitational pull causes the parent star to move back and forth. This tiny radial motion shifts the observed spectrum of the star by a correspondingly small amount because of the Doppler shift.Read more

Breakthrough Findings on Mars Organics and Mars Methane

The Curiosity rover on Mars takes a selfie at a site named Mojave. Rock powdered by the rover drill system and then intensively heated rock and then heated to as much as 800 degrees centigrade produced positive findings for long-sought organics. (NASA/JPL-Caltech/MSSS.)

A decades-long quest for incontrovertible and complex Martian organics — the chemical building blocks of life — is over.

After almost six years of searching, drilling and analyzing on Mars, the Curiosity rover team has conclusively detected three types of naturally-occurring organics that had not been identified before on the planet.

The Mars organics Science paper, by NASA’s Jennifer Eigenbrode and much of the rover’s Sample Analysis on Mars (SAM) instrument team, was twinned with another paper describing the discovery of a seasonal pattern to the release of the simple organic gas methane on Mars.

This finding is also a major step forward not only because it provides ground truth for the difficult question of whether significant amounts of methane are in the Martian atmosphere, but equally important it determines that methane concentrations appear to change with the seasons. The implications of that seasonality are intriguing, to say the least.

In an accompanying opinion piece in Science, Inges Loes ten Kate of Utrecht University in  Netherlands wrote of the two papers: “Both these findings are breakthroughs in astrobiology.”

The clear conclusion of these (and other) recent findings is that Mars is not a “dead” planet where little ever changes.  Rather, it’s one with cycles that appear to produce not only methane but also sporadic surface water and changing dune formations.

Remains of 3.5 billion-year old lake that once filled Gale Crater. NASA scientists concluded early in the Curiosity mission that the planet was habitable long ago based on the study of mudstone remains like these. (NASA/JPL-Caltech/MSSS)

Finding organic compounds on Mars has been a prime goal of the Curiosity rover mission.

Those carbon-based compounds surely fall from the sky on Mars, as they do on Earth and everywhere else, but identifying them has proven illusive.

The consequences of that non-discovery have been significant.  Going back to the Viking missions of 1976, scientists concluded that life was not possible on Mars because there were no organics, or none that were detected.

Jen Eigenbrode, research astrobiologist at NASA’s Goddard Space Flight Center. (NASA/W. Hrybyk)

But the reasons for the disappearing organics are pretty well understood.  Without much of an atmosphere to protect it, the Martian surface is bombarded with ultraviolet radiation, which can destroy organic compounds. … Read more

« Older posts

© 2019 Many Worlds

Theme by Anders NorenUp ↑