Tag: white dwarf

Of White Dwarfs, "Zombie" Stars and Supernovae Explosions

Artistic view of the aftermath of a supernova explosion, with an unexpected white dwarf remnant. These super-dense but no longer active stars are thought to play a key role in many supernovae explosion. (Copyright Russell Kightley)
.

White dwarf stars, the remnant cores of low-mass stars that have exhausted all their nuclear fuel, are among the most dense objects in the sky.
 
Their mass is comparable to that of the sun, while their volume is comparable to that of Earth. Very roughly, this means the average density of matter in a white dwarf would be on the order of 1,000,000 times greater than the average density of the sun.
 
Thought to be the final evolutionary state of stars whose mass is not high enough to become a neutron star — a category that includes the sun and over 97% of the other stars in the Milky Way — they are dim objects first identified a century ago but only in the last decade the subject of broad study.
 
In recent years the white dwarfs have become more and more closely associated with supernovae explosions, though the processes involved remained hotly debated.  A team using the Hubble Space Telescope even captured  before and after images of what is hypothesized to be an incomplete white dwarf supernova.  What was left behind has been described by some as a “zombie star.”
 
Now a team of astronomers led by Stephane Vennes of the Czech Academy of Sciences has detected another zombie white dwarf, LP-40-365 , that they put forward as a far-flung remnant of a long-ago supernova explosion.  This is considered important and unusual because it would represent a first detection of such a remnant long after the supernova conflagration.
 
This dynamic is well captured in an animation accompanying the Science paper that describes the possible remnant.  Here’s the animation and a second-by-second description of what is theorized to have occurred:
 
 
00.0 sec: Initial binary star outside the disk of the Milky Way galaxy. A massive white dwarf accreting
material through an accretion disk from its red giant companion star. The stars orbit around the center of
mass of the binary system.
 
14.6 sec: The white dwarf reaches the Chandrasekhar mass limit and explodes as a bright Type Ia
supernova. However, the explosion is not perfect; a fraction of the white dwarf shoots out like a shrapnel to the left. The binary system disrupts.
 
18.0 sec: The supernova explosion again, at an edge – on view.
Read more

Shredding Exoplanets, And The Mysteries They May Unravel

In this artist’s conception, a tiny rocky object vaporizes as it orbits a white dwarf star. Astronomers have detected the first planetary object transiting a white dwarf using data from the K2 mission. Slowly the object will disintegrate, leaving a dusting of metals on the surface of the star. (NASA)

In this artist’s conception, a small planet or planetesimal vaporizes as it orbits close to a white dwarf star. The detection of several of these disintegrating planets around a variety of stars has led some astronomers to propose intensive study of their ensuing dust clouds as a surprising new way to learn about the interiors of  exoplanet.  (NASA)

One of the seemingly quixotic goals of exoplanet scientists is to understand the chemical and geo-chemical compositions of the interiors of the distant planets they are finding.   Learning whether a planet is largely made up of silicon or magnesium or iron-based compounds is essential to some day determining how and where specific exoplanets were formed in their solar systems, which ones might have the compounds and minerals believed to be necessary for  life, and ultimately which might actually be hosting life.

Studying exoplanet interiors is a daunting challenge for sure, maybe even more difficult in principle than understanding the compositions of exoplanet atmospheres.  After all, there’s still a lot we don’t know about the make-up of planet interiors in our own solar system.

An intriguing pathway, however, has been proposed based on the recent discovery of exoplanets in the process of being shredded.  Generally orbiting very close to their suns, they appear to be disintegrating due to intense radiation and the forces of gravity.

And the result of their coming apart is that their interiors, or at least the dust clouds from their crusts and mantles, may well be on display and potentially measurable.

“We know very little for sure about these disintegrating planets, but they certainly seem to offer a real opportunity,” said Jason Wright, an astrophysicist at Pennsylvania State University with a specialty in stellar astrophysics.  No intensive study of the dusty innards of a distant, falling-apart exoplanet has been done so far,  he said, but in theory at least it seems to be possible.

Artist’s impression of disintegrating exoplanet KIC 12255 (C.U Keller, Leiden University)

Artist’s impression of disintegrating exoplanet KIC 12557548, the first of its kind ever detected. (C.U Keller, Leiden University)

And if successful, the approach could prove broadly useful since astronomers have already found at least four of disintegrating planets and predict that there are many more out there.  The prediction is based on, among other things, the relative speed with which the planets fall apart.  Since the disintegration has been determined to take only tens of thousands to a million years (a very short time in astronomical terms) then scientists conclude that the shreddings must be pretty common  –based on the number already caught in the act.… Read more

© 2023 Many Worlds

Theme by Anders NorenUp ↑