Tag: University of California

How Planetary Orbits, in Our Solar System and Beyond, Can Affect Habitability

Varying degrees of orbital eccentricity around a central star. (NASA/JPL-Caltech)

As scientists work to understand what might make a distant planet habitable, one factor that is getting attention is the shape of the planet’s orbit, how “eccentric” it might be.

It might seem that a perfect circular orbit would be ideal for habitability because it would provide stability, but a new model suggests that it is not necessarily the case.  The planet in question is our own and what the model shows is that if Jupiter’s orbit were to change in certain ways, our planet might become more fertile than it is.

The logic play out as follows:

When a planet has a perfectly circular orbit around its star, the distance between the star and the planet never changes and neither does the in-coming heat. But most planets — including our own — have eccentric orbits around their stars, making the orbits oval-shaped. When the planet gets closer to its star it receives more heat, affecting the climate.

Using multi-factored models based on data from the solar system as it is known today, University of California, Riverside (UCR) researchers created an alternative solar system. In this theoretical system, they found that if Jupiter’s orbit were to become more eccentric, it would in turn produce big changes in the shape of Earth’s orbit.  Potentially for the better.

“If Jupiter’s position remained the same but the shape of its orbit changed, it could actually increase this planet’s habitability,” said Pam Vervoort, UCR Earth and planetary scientist and study lead author.

The paper upends two long-held scientific assumptions about our solar system, she said.

“Many are convinced that Earth is the epitome of a habitable planet and that any change in Jupiter’s orbit, being the massive planet it is, could only be bad for Earth,” Vervoort said in a release. “We show that both assumptions are wrong.”

Size comparison of Jupiter and Earth shows why any changes relating to the giant planet would have ripple effects. (NASA)

 

As she and colleagues report in the Astronomical Journal, if Jupiter pushed Earth’s orbit to become more eccentric based on its new gravitational pull, parts of the Earth would sometimes get closer to the sun.  As a results, parts of the Earth’s surface that are now sub-freezing would get warmer, increasing temperatures in the habitable range.

While the Earth-Jupiter connection is a focus of the paper and forms a relationship that’s not hard to understand, the thrust of the paper is modeling how similar kinds of exoplanet orbits and solar system relationships can affect habitability and the potential for life to emerge and prosper.… Read more

How Many Habitable Zone Planets Can Orbit a Host Star?

This representation of the Trappist-1 system shows which planets could potentially have temperature conditions which would allow for the presence of liquid water, seen generally as essential for life.  The inner three planets are likely too hot, and the outer planet is probably too cold, but the middle three planets might be just right. (NASA / JPL-Caltech)

Our solar system has but one planet orbiting in what is commonly known as the habitable zone — at a distance from the host star where water could be liquid at times rather than always ice or gas.  That planet, of course, is Earth.

But from a theoretical, dynamical perspective, does this always have to be the case?  The answer to that question is no because a number of stars are known to have more than one habitable zone planet.

Now a team from the University of California, Riverside has produced a study that concludes as many as seven Earth-sized, habitable zone planets could orbit a single star — if there were no large Jupiter-sized planets in the system and if the star was of a particular type.

The article, published in the Astronomical Journal, concluded that seven habitable zone planets was the maximum for a star, but a sun such as ours could potentially support six planets with sometimes liquid water — a condition considered essential for life.

Study leader Stephen Kane, an astrobiologist who focuses on potentially habitable exoplanets, said he had been studying the nearby solar system Trappist-1, which has three Earth-like planets in its habitable zone and seven planets all together.

“This made me wonder about the maximum number of habitable planets it’s possible for a star to have, and why our star only has one,” Kane said.

With the discovery of an eighth planet, the Kepler-90 system is the first to tie with our solar system in number of planets. Artist’s concept. Credit: NASA/Ames Research Center/Wendy Stenzel

His conclusion:

“Even though (our solar system) only has one planet in the habitable zone, it’s not necessarily the typical situation. A far more typical scenario may be to have many planets in the habitable zone, depending on the presence of a giant planet.”

More later about the destabilizing effects of giant planet, but the Kane (and others) say that looking for solar systems without Jupiter-size planets has become increasingly important because of this effect on other terrestrial planets.

To determine how many habitable zone planets might be possible in a solar system, his team created a model system in which they simulated planets of various sizes orbiting their stars.

Read more

© 2023 Many Worlds

Theme by Anders NorenUp ↑