Tag: sun

Reports From Inside the Sun’s Corona

This movie is built from images taken over 10 days during the full perihelion encounter when the spacecraft was nearing the Sun’s corona. The perihelion is a brief moment during the encounter time, when the spacecraft is at its closest point to the Sun. The movie is from orbit 10 and dates and distances are on the frames, and changing locations of planets are in red.  (AHL/JHU; NASA)

To borrow from singer Paul Simon, these are definitely days of miracles and wonders — at least when it comes to exploring and understanding our Sun.

The Parker Solar Probe has been swinging further and further into the Sun’s corona, having just finished its 12th of 24 descents into a world of super-heated matter (plasma) where no human creation has ever gone.

The probe has dipped as close as 5.3 million miles from the surface of the sun — Mercury is 32 million miles from that solar surface — and is flying through the solar wind, through streamers (rays of magnetized solar material)  and even at times through coronal mass ejections, those huge eruptions of magnetized plasma flying at speeds up to nearly 2,000 miles per second.

This is all a goldmine for solar scientists, an opportunity to study our star — and by extension all stars — up close and to learn much more about how it works.

At a four-day conference at the Johns Hopkins University Applied Physics Lab late last month, scores of scientists described the results of their early observations and analyses of the measurements and images coming from the Parker Probe via its The Wide-Field Imager (WISPR) and instruments that measure energy and magnetic flows.  The results have often surprising and, as some scientists said, “thrilling.”

“Parker Solar Probe was developed to answer some of the biggest puzzles, biggest questions about our Sun,” said Nour Raouafi, project scientist for the Parker Solar Probe.

“We have learned so much that we believe we are getting close to finding some important answers.  And we think the answers will be quite big for our field, and for science.”

The Parker Solar Probe had observed many switchbacks in the corona— traveling disturbances in the solar wind that cause the magnetic field to bend back on itself.  They are an as-yet unexplained phenomenon that might help scientists uncover more information about how the solar wind is accelerated from the Sun. (NASA’s Goddard Space Flight Center/Conceptual Image Lab/Adriana Manrique Gutierrez)

Among the many unexpected solar features and forces detected by the Parker Probe is the widespread presence of switchbacks, rapid flips of the Sun’s magnetic field moving away from the Sun. … Read more

Touching the Sun

An illustration of NASA’s Parker Solar Probe flying past the sun. The spacecraft has a carbon-carbon heat shield (carbon fibers in a carbon matrix) that can protect it from temperatures of up to 2500 F, about the melting point of steel.  (NASA’s Goddard Space Flight Center)

The Parker Solar Probe is the stuff of superlatives and marvels.

Later this week, it will pass but 5.3 million miles from the sun — much closer than Mercury or any other spacecraft  have ever come — and it will be traveling at a top speed of 101 miles per second, the fastest human-made object ever created.

It’s designed to withstand temperatures of 2,500 degrees Fahrenheit and solar radiation 475 times the intensity at Earth orbit.

And as it reaches its perihelion, or closest pass of this orbit, it will be on only its 10th of 24 planned progressively closer solar passes.  In the years ahead, it will ultimately skim into the upper corona, the atmosphere of charged and unimaginably hot plasma that surrounds the sun and other stars.  The Parker Probe will, quite literally, touch the sun.

Something rather awe-inspiring to think about this coming Sunday, when the next pass takes place.

The mission, however, surely does not have record-setting as its goal.  Rather, those records are necessary to achieve the scientific goals — to fly close enough to the sun to understand how and where the gravity-defying force of the “solar wind” originates; to determine the structure and dynamics of the magnetic fields and switchbacks that are hotly debated as a possible source of that solar wind; and to resolve the mystery of why the sun’s corona is unexpectedly hotter than the solar “surface” below it.

“Parker Solar Probe is already telling us many important things about the sun that we didn’t know,” said Nour Raouafi, Parker Solar Probe project scientist at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland.  “We are definitely getting closer to understanding some of the big questions we had before, such as the source of the solar wind.  But we have to be mindful that in whatever we find, the Sun is always changing.”

And incidently, he said, more than 99.9 percent of all the matter in our solar system is in and around the sun.

 

Solar wind activity at different scales as imaged by the Parker Probe’s Wide-field Imager (WISPR) instrument earlier this year during.
Read more

© 2022 Many Worlds

Theme by Anders NorenUp ↑