Tag: sample return

Can We Trust a Handful of Grains to Tell Us About the Early Earth? A Look at the Hayabusa2 Asteroid Sample

The Hayabusa2 sample return capsule returning to Earth. The bright streak in the sky is the capsule, shock heated as it enters the Earth’s atmosphere. The bright lights on the ground are buildings. (JAXA)

In the early hours of December 6, 2020, what appeared to be a shooting star blazed across the sky above the Woomera desert in South Australia. The source was the sample return capsule from JAXA’s Hayabusa2 mission, which contained precious material from a near-Earth asteroid known as Ryugu.

Within 60 hours, the capsule had been retrieved and flown to the curation facility at JAXA’s Institute of Space and Astronautical Science in Japan. In vacuum conditions to prevent any trace of contamination, the capsule was opened to reveal over 5 grams of asteroid grains.

This material is expected to have undergone little change since the early days of the solar system some 4.5 billion years ago, and its highly anticipated analysis could provide new information about how the Earth acquired water and organics needed to begin life. The sample is the first ever collected from a carbonaceous (C-type) asteroid, which resemble primitive meteorites found to have a chemical composition close to that of the Sun.

Tet despite a rigorously planned and executed journey of over 5,000 million kilometers to bring back a pristine sample from space, concerns have remained. Chief among these are whether the rocky grains in the sample capsule were typical of the asteroid.

If the Hayabusa2 spacecraft had inadvertently gathered grains from an unusual spot, or if the grains had been altered during the collection and return to Earth, then deductions about the asteroid’s composition–and therefore our solar system’s past–could be wrong.  

The sample from asteroid Ryugu (from Yada et al. Nature Astronomy 2021)

The Hayabusa2 team had already gone to rather extreme lengths to mitigate this issue.

In addition to the rapid retrieval operation that ensured that the sample was not contaminated by our planet’s atmosphere, the spacecraft had performed the dangerous landing twice on the surface of asteroid Ryugu to collect samples from two separate sites.

One of these locations was close to where the spacecraft had made an artificial crater, ejecting material from beneath the asteroid’s surface to be gathered during the second collection operation. Rocky grains from below the top layer surface are expected to be particularly pristine, as they have been protected from the bombardment of sunlight, cosmic rays and micrometeorites.… Read more

Sample Return from Mars Begins in Earnest

This image taken by NASA’s Perseverance rover on Sept. 7, 2021 shows two holes where the rover’s drill obtained chalk-size samples from a rock nicknamed “Rochette.” They are the first physical manifestations of the NASA’s long-planned Mars Sample Return Mission. (NASA/JPL-Caltech.)

For the first time ever, a sample of pulverized rock from another planet has been drilled, collected and stored for eventual delivery to the highest-tech labs on Earth.

Yes, a storehouse of rocks were collected on the moon by Apollo astronauts and delivered to Houston, and some small samples of two asteroids and one comet were snatched by three spacecraft (two Japanese and one American) and their contents were brought here for study.

But never before has the surface of another planet been the source of precious extraterrestrial material that some day, if all goes well, will be received on Earth for intensive analysis.

The feat was accomplished by the team that operates the Perseverance rover on Mars.  After an unsuccessful effort to drill what turned out to be a very soft rock in August , the rover drill succeeded in digging into a briefcase-sized hard volcanic rock twice this month and pulling out samples to be tubed and stored for later pick-up by a different mission.

That next step isn’t scheduled for another half decade and the samples would not arrived on Earth until well after that.  But a long-dreamed and highly-ambitious effort to bring some of Mars to Earth (called Mars Sample Return) has now formally begun.

“This is a truly historic achievement, the very first rock cores collected on another terrestrial planet — it’s amazing,” Meenakshi Wadhwa, Mars sample return principal scientist at NASA’s Jet Propulsion Laboratory, said during a news conference held Friday

“In our science community, we’ve talked about Mars sample return for decades,” Wadhwa said. “And now it’s actually starting to feel real.”

Perseverance’s first cored-rock sample of Mars is seen inside its titanium container tube in this image taken by the rover’s Sampling and Caching System Camera, known as CacheCam. (NASA/JPL-Caltech)

The press conference was a victory lap of sorts for leaders of a team with many members who have worked eight to ten years for this moment.  Lori Glaze, NASA’s director of the Planetary Science Division, also called it an historic achievement –the culmination of advances pioneered by many other NASA missions to Mars and elsewhere and a milestone for NASA’s Mars program.… Read more

Japan’s Mission to the Martian Moons Will Return a Sample From Phobos. What Makes This Moon So Exciting?

Artist impression of JAXA’s MMX spacecraft around Mars (JAXA).

Japan in planning to launch a mission to visit the two moons of Mars in 2024. The spacecraft will touchdown on the surface of Phobos, gathering a sample to bring back to Earth. But what is so important about a moon the size of a city?

Unlike the spherical shape of the Earth’s moon, the Martian moons resemble asteroids, with an asymmetric lumpy potato structure. This highlights one of the first mysteries about the pair: how did they form?

Light reflected from the moons’ surface gives clues to their composition, as different minerals absorb particular wavelengths of radiation. If an object reflects more light at longer wavelengths, it is said to have a spectra with a red slope. This is true of both Phobos and Deimos, which appear very dark in visible light but reflect more strongly in longer near-infrared wavelengths. It is also true of D-type asteroids, which orbit the sun in the outer edge of the asteroid belt that sits between Mars and Jupiter.

The similarities between both their lumpy shape and reflected light has led to speculation that the two moons are captured asteroids, snagged by Mars’s gravity after a collision in the asteroid belt scattered them towards the sun.

How did the martian moons form? Were they asteroids captured by Mars’s gravity or formed during a giant impact event? (Elizabeth Tasker)

However, such a gravitational lasso would typically move the captured object onto an inclined or highly elliptical orbit. Neptune’s moon, Triton, is suspected to be captured as it orbits in the reverse direction to Neptune’s own spin and on a path tilted from the ice giant’s equator by 157 degrees.

Yet both Phobos and Deimos sit on near-circular orbits in the equatorial plane of the planet. This configuration suggests the moons may have been formed in a giant impact with Mars, which threw debris into orbit and this coalesced into the two moons.

This mystery will be one of the first tackled by Japan’s planned Martian Moons eXploration (MMX) mission, that is due to launch in the fiscal year of 2024. Onboard are multiple instruments designed to unpick the moons’ composition from close quarters, providing far more detailed information than that from distant reflected light.

If these moons are impact debris, their composition should be similar to Mars. Captured asteroids would show a more unique rocky formula.… Read more

Phobos and Deimos: Captured Asteroids or Cut From Ancient Mars?

Illustration of Mars with its two moons, Phobos and Deimos. (NASA/JPL-Caltech/Malin Space Science Systems/Texas A&M Univ.)

The global success rate for sending missions to land on the moons of Mars has hardly been impressive — coming in at zero out of three attempts.  They were all led by the Russian (or former Soviet) space agencies, in collaboration with organizations ranging from the Chinese and Bulgarian space agencies to the Paris Observatory and the U.S. Planetary Society.

Now the Japanese space agency JAXA has approved its own mission to Phobos and Deimos, scheduled to launch from the Tanegashima Space Center in September 2024.

The Martian Moons eXploration (MMX) spacecraft will arrive at Mars in August 2025 and spend the next three years exploring the two moons and the environment around Mars. During this time, the spacecraft will drop to the surface of one of the moons and collect a sample to bring back to Earth. Probe and sample are scheduled to return to Earth in the summer of 2029.

Mars takes its name from the god of war in ancient Greek and Roman mythology. The Greek god Ares became Mars in the Roman adaptation of the deities. Mars’s two moons are named for Phobos and Deimos; in legend the twin sons of Ares who personified fear and panic.

Today, what the moons together personify is a compelling mystery, one regarding how in reality they came to be.

Both Martian moons are small, with Phobos’s average diameter measuring 22.2km, while the even smaller Deimos has an average size of just 13km. This makes even Phobos’s surface area only comparable to that of Tokyo. Their diminutive proportions means that the moons resemble asteroids, with irregular structures due to their gravity being too weak to pull them into spheres.

This leads to the question that has inspired a long-running debate: Were Phobos and Deimos formed during an impact with Mars, or are they asteroids that have been captured by Mars’s gravity?

Phobos and Deimos, photographed by the Mars Reconnaissance Orbiter. (NASA/JPL)

Our own Moon is thought to have been created when a Mars-sized body slammed into the early Earth. Debris from the collision was thrown into the Earth’s orbit where is coalesced into our only natural satellite.

A similar scenario is possible for Phobos and Deimos. In the late stages of our solar system’s formation, giant impacts such as the one that struck the Earth were relatively common.… Read more

© 2023 Many Worlds

Theme by Anders NorenUp ↑