This article of mine, slightly tweaked for Many Worlds, first appeared today (July 6) in Astrobiology Magazine, http://www.astrobio.net

NASA’s Cassini spacecraft completed its deepest-ever dive through the icy plume of Enceladus on Oct. 28, 2015. The spacecraft did not have instruments that could detect life, but missions competing for NASA New Frontiers funding will — raising the thorny question of how life might be detected. (NASA/JPL-Caltech)
As NASA inches closer to launching new missions to the Solar System’s outer moons in search of life, scientists are renewing their focus on developing a set of universal characteristics of life that can be measured.
There is much debate about what might be considered a clear sign of life, in part, because there are so many definitions separating the animate from the inanimate.
NASA’s prospective missions to promising spots on Europa, Enceladus and Titan have their individual approaches to detecting life, but one respected voice in the field says there is a better way that’s far less prone to false positives.
Noted chemist and astrobiologist Steven Benner says life’s signature is not necessarily found in the presence of particular elements and compounds, nor in its effects on the surrounding environment, and is certainly not something visible to the naked eye (or even a sophisticated camera).
Rather, life can be viewed as a structure, a molecular backbone that Benner and his group, Foundation for Applied Molecular Evolution (FfAME), have identified as the common inheritance of all living things. Its central function is to enable what origin-of-life scientists generally see as an essential dynamic in the onset of life and its increased complexity and spread: Darwinian evolution via transfer of information, mutation and the transfer of those mutations.
“What we’re looking for is a universal molecular bio-signature, and it does exist in water,” says Benner. “You want a genetic molecule that can change physical conditions without changing physical properties — like DNA and RNA can do.”
Looking for DNA or RNA on an icy moon, or elsewhere would presuppose life like our own — and life that has already done quite a bit of evolving.
A more general approach is to find a linear polymer (a large molecule, or macromolecule, composed of many repeated subunits, of which DNA and RNA are types) with an electrical charge. That, he said, is a structure that is universal to life, and it can be detected.… Read more