Tag: organic compounds

Many Planets Form in a Soup of Life-Friendly Organic Compounds

Artist’s depiction of a protoplanetary disk with young planets forming around a star. The right-side panel zooms in to show various organic molecules that are accreting onto a planet. (M.Weiss/Center for Astrophysics | Harvard & Smithsonian)

One of the more persuasive arguments in favor of the potential existence of life beyond Earth is that the well-known chemical building blocks of that life are found throughout the galaxy.  These chemical components aren’t all present in all examined solar systems and planets, but they are common and behave in ways familiar to scientists here.

And when it comes elements and compounds found on distant planets but not found here, there just aren’t many. That doesn’t mean they don’t exist — some unstable compounds in interstellar space, for instance — but rather that the cosmos holds many surprises but none have involved extraterrestrial elements or compounds near planets or stars.

This is in large part the result of how elements are formed in the universe.  Other than hydrogen and helium, all other elements are forged in the thermonuclear explosion of stars that have exhausted their supply of fuel.  These massive explosions (supernovae) then shoot the newly-formed elements out into space where they can and do collect in gas and dust clouds that will form other new stars.  They are spread throughout the disks that form around new stars and over time they become components of new planets in formation.

This galactic evolution includes the bonding together of carbon-based organic compounds — the building blocks of life as we know it.  They are an essential component to any theory of a planet’s habitability and,  while their presence in space and star nurseries has been known for some time,  they have remained a subject of great interest but limited detailed knowledge.

That is why an international team from the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass. set out to intensively study five disks forming around young stars to determine more precisely what organic compounds were present and available for objects developing into planets.

And the results are striking:  The abundance of organic material detected was 10 to 100 times more than expected.

“These planet-forming disks are teeming with organic molecules, some of which are implicated in the origins of life here on Earth,” said team leader Karin Öberg. “This is really exciting; the chemicals in each disk will ultimately affect the type of planets that form and determine whether or not the planets can host life.”… Read more

The Search for Organic Compounds On Mars Is Getting Results

This photograph, taken by NASA's Mars Rover Curiosity in 2015, shows sedimentary rocks of the Kimberley Formation in Gale Crater. The crater contains thick deposits of finely-laminated mudstone that represent fine-grained sediments deposited in a standing body of water that persisted for a long period of time - long enough to allow sediments to accumulate to significant thickness. Image by NASA. Enlarge image. [8]

Sedimentary rocks of the Kimberley Formation in Gale Crater, as photographed in 2015. The crater contains thick deposits of finely-laminated mudstone from fine-grained sediments deposited in a standing body of water that persisted for a long period of time.  Scientists have now reported several detections of organic compounds — the building blocks of life in Gale Crater samples. (NASA/JPL-Caltech/MSSS)

One of the primary goals of the Curiosity mission to Mars has been to search for and hopefully identify organic compounds — the carbon-based molecules that on Earth are the building blocks of life.

No previous mission had quite the instruments and capacity needed to detect the precious organics, nor did they have the knowledge about Martian chemistry that the Curiosity team had at launch.

Nonetheless, finding organics with Curiosity was no sure things.  Not only is the Martian surface bombarded with ultraviolet radiation that breaks molecules apart and destroys organics, but also a particular compound now known to be common in the soil will interfere with the essential oven-heating process used by NASA to detect organics.

So when Jennifer Eigenbrode, a biogeochemist and geologist at the Goddard Space Flight Center and a member of the Curiosity organics-searching team,  asked her colleagues gathered for Curiosity’s 2012 touch-down whether they thought organics would be found, the answer was not pretty.

“I did a quick survey across the the team and I was convinced that a majority in the room were very doubtful that we would ever detect organics on Mars, and certainly not in the top five centimeters or the surface.”

Yet at a recent National Academies of Sciences workshop on “Searching for Life Across Space and Time,” Eigenbrode gave this quite striking update:

“At this point, I can clearly say that I am convinced, and I hope you will be too, that organics are all over Mars, all over the surface, and probably through the rock record.  What does that mean? We’ll have to talk about it.”

 The hole drilled into this rock target, called "Cumberland," was made by NASA's Mars rover Curiosity on May 19, 2013. Credit: NASA/JPL-Caltech/MSSS

The hole drilled into this rock target, called “Cumberland,” was made by NASA’s Mars rover Curiosity on May 19, 2013.  One of the samples found to have organics was from the Cumberland hole. (NASA/JPL-Caltech/MSSS)

This is not, it should be said, the first time that a member of the Curiosity “Sample Analysis on Mars”  (SAM) team has reported the discovery of organic material.   The simple, but very important organic gas methane was detected in Gale Crater,  as were chlorinated hydrocarbons.… Read more

© 2023 Many Worlds

Theme by Anders NorenUp ↑