Tag: NExSS (page 1 of 3)

The James Webb Space Telescope And Its Exoplanet Mission (Part 1)

 

This artist’s conception of the James Webb Space Telescope in space shows all its major elements fully deployed. The telescope was folded to fit into its launch vehicle, and then was slowly unfolded over the course of two weeks after launch. (NASA GSFC/CIL/Adriana Manrique Gutierrez)

 

The last time Many Worlds wrote about the James Webb Space Telescope, it was in the process of going through a high-stakes, super-complicated unfurling.  About 50 autonomous deployments needed to occur after launch to set up the huge system,  with 344 potential single point failures to overcome–individual steps that had to work for the mission to be a success.

That process finished a while back and now the pioneering observatory is going through a series of alignment and calibration tests, working with the images coming in from the 18 telescope segments to produce one singular image.

According to the Space Telescope Science Institute,  working images from JWST will start to appear in late June, though there may be some integrated  “first light” images slightly earlier.

Exciting times for sure as the observatory begins its study of the earliest times in the universe, how the first stars and galaxies formed, and providing a whole new level of precision exploration of exoplanets.

Adding to the very good news that the JWST successfully performed all the 344 necessary steps to unfurl and that the mirror calibration is now going well is this:  The launch itself went off almost exactly according to plan.  This means that the observatory now has much more fuel on hand than it would have had if the launch was problematic. That extra fuel means a longer life for the observatory.

 

NASA announced late last month that it completed another major step in its alignment process of the new James Webb Space Telescope, bringing its test images more into focus. The space agency said it completed the second and third of a seven-phase process, and had accomplished “Image Stacking.” Having brought the telescope’s mirror and its 18 segmented parts into proper alignment, it will now begin making smaller adjustments to the mirrors to further improve focus in the images. (NASA/STScI)

Before launch, the telescope was expected to last for five years.  Now NASA has said fuel is available for a ten year mission and perhaps longer.  Quite a start.

(A NASA update on alignment and calibration will be given on Wednesday. … Read more

Why Does Our Solar System Have No Super-Earths, and Other Questions for Comparative Planetology

An artist’s impression of the exoplanet LHS 1140b, which orbits a red dwarf star 40 light-years from Earth. Using the European Southern Observatory’s telescope at La Silla, Chile, and other telescopes around the world, an international team of astronomers discovered this super-Earth orbiting in the habitable zone around the faint star LHS 1140. This world is a little larger and much more massive than the Earth. (ESO)

Before the explosion in discovery of extrasolar planets, the field of comparative planetology was pretty limited  — confined to examining the differences between planets in our solar system and how they may have come to pass.

But over the past quarter century, comparative planetology and the demographics of planets came to mean something quite different.  With so many planets now identified in so many solar systems, the comparisons became not just between one planet and another but also between one solar system and another.

And the big questions for scientists became the likes of:  How and why are the planetary makeups of distant solar systems often so different from our own and from each other; what does the presence  or absence of large planets in a solar system do to the distribution of smaller planets;  how large can a rocky planet can get before it turns to a gas giant planet; and on a more specific subject, why do some solar systems have hot Jupiters close to the host star and others have cold Jupiters much further out like our own

Another especially compelling question involves our own solar system, though as something of an outlier rather than a prototype.

That question involves the absence in our solar system of anything in the category of a “super-Earth” — a rocky or gaseous extrasolar planet with a mass greater than Earth’s but substantially below those of our solar system’s planets next in mass,  Uranus and Neptune.

The term “super-Earth” refers only to the mass and radii of the planet, and so does not imply anything about the surface conditions or habitability. But in the world of comparative planetology “super-Earths” are very important because they are among the most common sized exoplanets found so far and some do seem to have planetary characteristics associated with habitability.

Yet they do not exist in our solar system.  Why is that?

Artist rendition of Earth in comparison to one of the many super-Earth planets. (NASA)

In a recent article in The Astrophysical Journal Letters,  planetary demographer Gijs D.… Read more

New Insights Into How Earth Got Its Nitrogen

An artist’s conception shows a protoplanetary disk of dust and gas around a young star. New research by Rice University shows that Earth’s nitrogen came from both inner and outer regions of the disk that formed our solar system, contrary to earlier theory.  (NASA/JPL-Caltech)

Scientists have long held that many of the important compounds and elements that make life possible on Earth arrived here after the planet was formed and was orbiting the sun.  These molecules came via meteorites and comets, it was thought,  from the colder regions beyond Jupiter.

But in a challenge to that long-accepted view, a team from Rice University has found isotopic signatures of nitrogen from both the inner and the outer disk in iron meteorites that fell to Earth.  What this strongly suggests is that the seeds of rocky, inner solar system planets such as Earth were bathed in  dust that contained nitrogen and other volatiles, and the growing planet kept some of that “local” material.

“Our work completely changes the current narrative,” said Rice University graduate student and lead author Damanveer Grewal. “We show that the volatile elements were present in the inner disk dust, probably in the form of refractory (non-gaseous) organics, from the very beginning. This means that contrary to current understanding, the seeds of the present-day rocky planets — including Earth — were not volatile-free.”

The solar protoplanetary disk was separated into two reservoirs, with the inner solar system material having a lower concentration of nitrogen-15 and the outer solar system material being nitrogen-15 rich. The nitrogen isotope composition of present-day Earth lies in between, according to a new Rice University study that shows it came from both reservoirs. (Credit: Illustration by Amrita P. Vyas)

This work helped settle a prolonged debate over the origin of life-essential volatile elements — such as hydrogen, water, carbon dioxide, methane, nitrogen, ammonia — on Earth and other rocky bodies in the solar system.

“Researchers have always thought that the inner part of the solar system, within Jupiter’s orbit, was too hot for nitrogen and other volatile elements to condense as solids, meaning that volatile elements in the inner disk were only in the gas phase,” Grewal said.

Because the seeds of present-day rocky planets, also known as protoplanets, grew in the inner disk by accreting locally sourced dust, he said it appeared they did not contain nitrogen or other volatiles because of the high temperatures, necessitating their delivery from the outer solar system.… Read more

Using Climate Science on Earth to Understand Planets Beyond Earth

Climate expert Tony Del Genio has just retired after 41 years-plus at NASA’s Goddard Institute of Space Studies (GISS) in New York City. Here Del Genio is attending a Cubs game at Wrigley Field with (from the lower right) Dawn Gelino, Shawn Domogal-Goldman, Aaron Gronstal and Mary Voytek. All are part of the NASA NExSS initiative. (Dawn Gelino)

Anthony Del Genio started out his career expecting to become first an engineer and then a geophysicist.  He was in graduate school at UCLA and had been prepared by previous mentors to enter the geophysics field.  But a 1973 department-wide test focused on seismology, rather than fields that he understood better, and his days as a geophysicist were suddenly over.  Fortunately,  one of his professors saw that he had done very well in the planetary atmospheres and geophysical fluid dynamics sections of the exams, and suggested a change in focus.

That turned out to be a good thing for Del Genio, for the field of climate modeling, and for NASA. Because for the next four decades-plus, Del Genio has been an important figure in the field of climate science — first modeling cloud behavior and climate dynamics on Earth with ever more sophisticated atmospheric general circulation models (GCMs), and then beginning to do the same on planets beyond Earth.

His entry into the world of Venus, Saturn, Titan and distant exoplanets beyond is how I met Tony in 2015. At the same time that Many Worlds began as a column, Del Genio was named one of the founding leaders of the Nexus for Exoplanet System Science (NExSS) — the pioneering, interdisciplinary NASA initiative to bring together scientists working in the field of planetary habitability.  (NExSS also supports this column.)

Del Genio is a hard-driving scientist, but also has a self-deprecating and big-picture, poetic side.  This came across at our first diner breakfast together on Manhattan’s Upper West Side (where GISS is located), and was highlighted in a piece that Del Genio just wrote for a new series initiated by the American Geophysical Union (AGU),  Perspectives of Earth and Space Scientists.   In that series, scientists are asked to look back on their careers and write about their science and journeys.  Del Genio’s perspective is the first in this series, and I will reprint most of its bottom half because I found it so informative and interesting.

But first, a quote from Del Genio’s piece that sets the stage:  “The beauty of science, if we are patient, is that nature reveals its secrets little by little, slowly enough to keep us pressing forward for more but fast enough for us not to despair.”… Read more

NExSS 2.0

Finding new worlds can be an individual effort, a team effort, an institutional effort. The same can be said for characterizing exoplanets and understanding how they are affected by their suns and other planets in their solar systems. When it comes to the search for possible life on exoplanets, the questions and challenges are too great for anything but a community. NASA’s NExSS initiative has been an effort to help organize, cross-fertilize and promote that community. This artist’s concept Kepler-47, the first two-star systems with multiple planets orbiting the two suns, suggests just how difficult the road ahead will be. ( NASA/JPL-Caltech/T. Pyle)

 

The Nexus for Exoplanet System Science, or “NExSS,”  began four years ago as a NASA initiative to bring together a wide range of scientists involved generally in the search for life on planets outside our solar system.

With teams from seventeen academic and NASA centers, NExSS was founded on the conviction that this search needed scientists from a range of disciplines working in collaboration to address the basic questions of the fast-growing field.

Among the key goals:  to investigate just how different, or how similar, different exoplanets are from each other; to determine what components are present on particular exoplanets and especially in their atmospheres (if they have one);  to learn how the stars and neighboring exoplanets interact to support (or not support) the potential of life;  to better understand how the initial formation of planets affects habitability, and what role climate plays as well.

Then there’s the  question that all the others feed in to:  what might scientists look for in terms of signatures of life on distant planets?

Not questions that can be answered alone by the often “stove-piped” science disciplines — where a scientist knows his or her astrophysics or geology or geochemistry very well, but is uncomfortable and unschooled in how other disciplines might be essential to understanding the big questions of exoplanets.

 

The original NExSS team was selected from groups that had won NASA grants and might want to collaborate with other scientists with overlapping interests and goals  but often from different disciplines. (NASA)

The original idea for this kind of interdisciplinary group came out of NASA’s Astrobiology Program, and especially from NASA astrobiology director Mary Voytek and colleague Shawn Domogal-Goldman of the Goddard Space Flight Center, as well as Doug Hudgins of NASA Astrophysics.  It was something of a gamble, since scientists who joined would essentially volunteer their time and work and would be asked to collaborate with other scientists in often new ways.… Read more

A National Strategy for Finding and Understanding Exoplanets (and Possibly Extraterrestrial Life)

The National Academies of Science, Engineering and Medicine took an in-depth look at what NASA, the astronomy community and the nation need to grow the burgeoning science of exoplanets — planets outside our solar system that orbit a star. (NAS)

 

An extensive, congressionally-directed study of what NASA needs to effectively learn how exoplanets form and whether some may support life was released today, and it calls for major investments in next-generation space and ground telescopes.  It also calls for the adoption of an increasingly multidisciplinary approach for addressing the innumerable questions that remain unanswered.

While the recommendations were many, the top line calls were for a sophisticated new space-based telescope for the 2030s that could directly image exoplanets, for approval and funding of the long-delayed and debated WFIRST space telescope, and for the National Science Foundation and to help fund two of the very large ground-based telescopes now under development.

The study of exoplanets has seen remarkable discoveries in the past two decades.  But the in-depth study from the private, non-profit National Academies of Sciences, Engineering and Medicine concludes that there is much more that we don’t understand than that we do, that our understandings are “substantially incomplete.”

So the two overarching goals for future exoplanet science are described as these:

 

  • To understand the formation and evolution of planetary systems as products of star formation and characterize the diversity of their architectures, composition, and environments.
  • To learn enough about exoplanets to identify potentially habitable environments and search for scientific evidence of life on worlds orbiting other stars.

 

Given the challenge, significance and complexity of these science goals, it’s no wonder that young researchers are flocking to the many fields included in exoplanet science.  And reflecting that, it is perhaps no surprise that the NAS survey of key scientific questions, goals, techniques, instruments and opportunities runs over 200 pages. (A webcast of a 1:00 pm NAS talk on the report can be accessed here.)

 


Artist’s concept showing a young sun-like star surrounded by a planet-forming disk of gas and dust.
(NASA/JPL-Caltech/T. Pyle)

These ambitious goals and recommendations will now be forwarded to the arm of the National Academies putting together 2020 Astronomy and Astrophysics Decadal Survey — a community-informed blueprint of priorities that NASA usually follows.

This priority-setting is probably most crucial for the two exoplanet direct imaging missions now being studied as possible Great Observatories for the 2030s — the paradigm-changing space telescopes NASA has launched almost every decade since the 1970s.

Read more

False Positives, False Negatives; The World of Distant Biosignatures Attracts and Confounds

This artist’s illustration shows two Earth-sized planets, TRAPPIST-1b and TRAPPIST-1c, passing in front of their parent red dwarf star, which is much smaller and cooler than our sun. NASA’s Hubble Space Telescope looked for signs of atmospheres around these planets. (NASA/ESA/STScI/J. de Wit, MIT)

What observations, or groups of observations, would tell exoplanet scientists that life might be present on a particular distant planet?

The most often discussed biosignature is oxygen, the product of life on Earth.  But while oxygen remains central to the search for biosignatures afar, there are some serious problems with relying on that molecule.

It can, for one, be produced without biology, although on Earth biology is the major source.  Conditions on other planets, however, might be different, producing lots of oxygen without life.

And then there’s the troubling reality that for most of the time there has been life on Earth, there would not have been enough oxygen produced to register as a biosignature.  So oxygen brings with it the danger of both a false positive and a false negative.

Wading through the long list of potential other biosignatures is rather like walking along a very wet path and having your boots regularly pulled off as they get captured by the mud.  Many possibilities can be put forward, but all seem to contain absolutely confounding problems.

With this reality in mind, a group of several dozen very interdisciplinary scientists came together more than a year ago in an effort to catalogue the many possible biosignatures that have been put forward and then to describe the pros and the cons of each.

“We believe this kind of effort is essential and needs to be done now,” said Edward Schwieterman, an astronomy and astrobiology researcher at the University of California, Riverside (UCR).

“Not because we have the technology now to identify these possible biosignatures light years away, but because the space and ground-based telescopes of the future need to be designed so they can identify them. ”

“It’s part of what may turn out to be a very long road to learning whether or not we are alone in the universe”.

 

Artistic representations of some of the exoplanets detected so far with the greatest potential to support liquid surface water, based on their size and orbit.  All of them are larger than Earth and their composition and habitability remains unclear. They are ranked here from closest to farthest from Earth. 

Read more

Putting Together a Community Strategy To Search for Extraterrestrial Life

I regret that the formatting of this column was askew earlier; I hope it didn’t make reading too difficult.  But now those problems are fixed.

The scientific search underway for life beyond Earth requires input from many disciplines and fields. Strategies forward have to hear and take in what scientists in those many fields have to say. (NASA)

Behind the front page space science discoveries that tell us about the intricacies and wonders of our world are generally years of technical and intellectual development, years of planning and refining, years of problem-defining and problem-solving.  And before all this, there also years of brainstorming, analysis and strategizing about which science goals should have the highest priorities and which might be most attainable.

That latter process is underway now in regarding the search for life in the solar system and beyond, with numerous teams of scientists tackling specific areas of interest and concern and turning their group discussions into white papers.  In this case, the white papers will then go on to the National Academy of Sciences for a blue-ribbon panel review and ultimately recommendations on which subjects are exciting and mature enough for inclusion in a decadal survey and possible funding.

This is a generally little-known part of the process that results in discoveries, but scientists certainly understand how they are essential.  That’s why hundreds of scientists contribute their ideas and time — often unpaid — to help put together these foundational documents.

With its call for extraterrestrial habitability white papers, the NAS got more than 20 diverse and often deeply thought out offerings.  The papers will be studied now by an ad hoc, blue ribbon committee of scientists selected by the NAS, which will have the first of two public meetings in Irvine, Calif. on Jan. 16-18.

Shawn Domagal-Goldman, a leader of many NASA study projects and a astrobiologist at NASA’s Goddard Space Fight Center. (NASA)

Then their recommendations go up further to the decadal survey teams that will set formal NASA priorities for the field of astronomy and astrophysics and planetary science.  This community-based process that has worked well for many scientific disciplines since they began in the late 1950s.

I’m particularly familiar with two of these white paper processes — one produced at the Earth-Life Science Institute (ELSI) in Tokyo and the other with NASA’s Nexus for Exoplanet System Science (NExSS.)  What they have to say is most interesting.Read more

Can You Overwater a Planet?

Water worlds, especially if they have no land on them, are unlikely to be home to life, or at least life we can detect.  Some of the basic atmospheric and mineral cycles that make a planet habitable will be absent. Cool animation of such a world. (NASA)

Wherever we find water on Earth, we find life. It is a connection that extends to the most inhospitable locations, such as the acidic pools of Yellowstone, the black smokers on the ocean floor or the cracks in frozen glaciers. This intimate relationship led to the NASA maxim, “Follow the Water”, when searching for life on other planets.

Yet it turns out you can have too much of a good thing. In the November NExSS Habitable Worlds workshop in Wyoming, researchers discussed what would happen if you over-watered a planet. The conclusions were grim.

Despite oceans covering over 70% of our planet’s surface, the Earth is relatively water-poor, with water only making up approximately 0.1% of the Earth’s mass. This deficit is due to our location in the Solar System, which was too warm to incorporate frozen ices into the forming Earth. Instead, it is widely — though not exclusively — theorized that the Earth formed dry and water was later delivered by impacts from icy meteorites. It is a theory that two asteroid missions, NASA’s OSIRIS-REx and JAXA’s Hayabusa2, will test when they reach their destinations next year.

But not all planets orbit where they were formed. Around other stars, planets frequently show evidence of having migrated to their present orbit from a birth location elsewhere in the planetary system.

One example are the seven planets orbiting the star, TRAPPIST-1. Discovered in February this year, these Earth-sized worlds orbit in resonance, meaning that their orbital times are nearly exact integer ratios. Such a pattern is thought to occur in systems of planets that formed further away from the star and migrated inwards.

Trappist-1 and some of its seven orbiting planets.  They would have been sterilized by high levels of radiation in the early eons of that solar system — unless they were formed far out and then migrated in.  That scenario would also allow for the planets to contain substantial amounts of water. (NASA)

The TRAPPIST-1 worlds currently orbit in a temperate region where the levels of radiation from the star are similar to that received by our terrestrial worlds.… Read more

Getting Real About the Oxygen Biosignature

Oxygen, which makes up about 21 percent of the Earth atmosphere, has been embraced as the best biosignature for life on faraway exoplanets. New research shows that detecting distant life via the oxygen biosignature is not so straight-forward, though it probably remains the best show we have. (NASA)

 

I remember the first time I heard about the atmospheres of distant exoplanets and how could and would let us know whether life was present below.

The key was oxygen or its light-modified form, ozone.  Because both oxygen and ozone molecules bond so quickly with other molecules — think rust or iron oxide on Mars, silicon dioxide in the Earth’s crust — it was said that oxygen could only be present in large and detectable quantities if there was a steady and massive source of free oxygen on the planet.

On Earth, this of course is the work of photosynthesizers such as planets, algae and cyanobacteria, which produce oxygen as a byproduct.  No other abiotic, or non-biological, ways were known at the time to produce substantial amounts of atmospheric oxygen, so it seemed that an oxygen signal from afar would be a pretty sure sign of life.

But with the fast growth of the field of exoplanet atmospheres and the very real possibility of having technology available in the years ahead that could measure the components of those atmospheres, scientists have been busy modelling exoplanet formations, chemistry and their atmospheres.

One important goal has been to search for non-biological ways to produce large enough amounts of atmospheric oxygen that might fool us into thinking that life has been found below.

And in recent years, scientists have succeeded in poking holes in the atmospheric oxygen-means-life scenario.

Oxygen bonds quickly with many other molecules. That means has to be resupplied regularly to be present as O2 in an atmosphere . On Earth, O is mostly a product of biology, but elsewhere it might be result of non-biological processes. Here is an image of oxygen bubbles in water.

Especially researchers at the University of Washington’s Virtual Planetary Laboratory (VPL) have come up with numerous ways that exoplanets atmospheres can be filled (and constantly refilled) with oxygen that was never part of plant or algal or bacteria photo-chemistry.

In other words, they found potential false positives for atmospheric oxygen as a biosignature, to the dismay of many exoplanet scientists.

In part because she and her own team were involved in some of these oxygen false-positive papers, VPL director Victoria Meadows set out to review, analyze and come to some conclusions about what had become the oxygen-biosignature problem.… Read more

« Older posts

© 2022 Many Worlds

Theme by Anders NorenUp ↑