Tag: New Frontiers

Two Tempting Reprise Missions: Explore Titan or Bring Back a Piece of A Comet

Dragonfly is a quadcopter lander that would take advantage of the environment on Titan to fly to multiple locations, some hundreds of miles apart, to sample materials and determine the composition of the surface.  A central goal would be to analyze Titan’s organic chemistry and assess its habitability. (NASA)

Unmanned missions to planets and moons and asteroids in our solar system have been some of NASA’s most successful efforts in recent years, with completed or on-going ventures to Mars, Saturn, Jupiter, the asteroid Bennu, our moon, Pluto, Mercury and bodies around them all.   On deck are a funded mission to Europa, another to Mars and one to the unique metal asteroid 16 Psyche orbiting the sun between Mars and Jupiter.

We are now closer to adding another New Frontiers class destination to that list, and NASA announced this week that it will be to either Saturn’s moon Titan or to the comet 67P/Churyumov-Gerasimenko.

After assessing 12 possible New Frontiers proposals, these two made the cut and will receive $4 million each to further advance their proposed science and technology. One of them will be selected in spring of 2019 for launch in the mid 2020s.

With the announcement, associate administrator for NASA’s Science Mission Directorate Thomas Zurbuchen described the upcoming choice as between two “tantalizing investigations that seek to answer some of the biggest questions in our solar system today.”

Those questions would be:  How did water and other compounds essential for life arrive on Earth?  Comets carry ancient samples of both, and so can potentially provide answers.

And with its large inventories of nitrogen, methane and other organic compounds, is Titan potentially habitable?  Then there’s the added and very intriguing prospect of visiting the methane lakes of that frigid moon.

The CAESAR mission would return to the nucleus of  comet explored by the European Space Agency’s Rosetta mission, and its lander Philae.  (NASA)

Both destinations selected have actually been visited before.

The European Space Agency’s Rosetta mission orbited the comet 67P/Churyumov-Gerasimenko comet for two years and deployed a lander, which did touch down but sent back data for only intermittently for several days.

And the NASA’s Cassini-Huygens mission to Saturn passed by Titan regularly during its decade exploring that system, and the ESA’s Huygens probe did land on Titan and sent back information for a short time.

So both Rosetta and Cassini-Huygens began the process of understanding these distant and potentially revelatory destinations, and now NASA is looking to take it further.… Read more “Two Tempting Reprise Missions: Explore Titan or Bring Back a Piece of A Comet”

Certain Big, Charged Molecules Are Universal to Life on Earth. Can They Help Detect It In The Far Solar System?


This article of mine, slightly tweaked for Many Worlds, first appeared today (July 6)  in Astrobiology Magazine,  www.astrobio.net

NASA’s Cassini spacecraft completed its deepest-ever dive through the icy plume of Enceladus on Oct. 28, 2015. The spacecraft did not have instruments that could detect life, but missions competing for NASA New Frontiers funding will — raising the thorny question of how life might be detected. (NASA/JPL-Caltech)

As NASA inches closer to launching new missions to the Solar System’s outer moons in search of life, scientists are renewing their focus on developing a set of universal characteristics of life that can be measured.

There is much debate about what might be considered a clear sign of life, in part, because there are so many definitions separating the animate from the inanimate.

NASA’s prospective missions to promising spots on Europa, Enceladus and Titan have their individual approaches to detecting life, but one respected voice in the field says there is a better way that’s far less prone to false positives.

Noted chemist and astrobiologist Steven Benner says life’s signature is not necessarily found in the presence of particular elements and compounds, nor in its effects on the surrounding environment, and is certainly not something visible to the naked eye (or even a sophisticated camera).

Rather, life can be viewed as a structure, a molecular backbone that Benner and his group, Foundation for Applied Molecular Evolution (FfAME), have identified as the common inheritance of all living things. Its central function is to enable what origin-of-life scientists generally see as an essential dynamic in the onset of life and its increased complexity and spread: Darwinian evolution via transfer of information, mutation and the transfer of those mutations.

“What we’re looking for is a universal molecular bio-signature, and it does exist in water,” says Benner. “You want a genetic molecule that can change physical conditions without changing physical properties — like DNA and RNA can do.”

Steven Benner, director of the Foundation for Applied Molecular Evolution or FfAME. (SETI)

Looking for DNA or RNA on an icy moon, or elsewhere would presuppose life like our own — and life that has already done quite a bit of evolving.

A more general approach is to find a linear polymer (a large molecule, or macromolecule, composed of many repeated subunits, of which DNA and RNA are types) with an electrical charge. That, he said, is a structure that is universal to life, and it can be detected.… Read more “Certain Big, Charged Molecules Are Universal to Life on Earth. Can They Help Detect It In The Far Solar System?”

© 2019 Many Worlds

Theme by Anders NorenUp ↑