he search for life beyond our solar system requires unprecedented cooperation across scientific disciplines. NASA's NExSS collaboration includes those who study Earth as a life-bearing planet (lower right), those researching the diversity of solar system planets (left), and those on the new frontier, discovering worlds orbiting other stars in the galaxy (upper right). Credits: NASA

The search for life beyond our solar system requires unprecedented cooperation across scientific disciplines. NASA’s NExSS collaboration includes those who study Earth as a life-bearing planet (lower right), those researching the diversity of solar system planets (left), and those on the new frontier, discovering worlds orbiting other stars in the galaxy (upper right). (NASA)

That fields of science can benefit greatly from cross-fertilization with other disciplines is hardly a new idea.  We have, after all, long-standing formal disciplines such as biogeochemistry — a mash-up of many fields that has the potential to tell us more about the natural environment than any single approach.  Astrobiology in another field that inherently needs expertise and inputs from a myriad of disciplines, and the NASA Astrobiology Institute was founded (in 1998) to make sure that happened.

Until fairly recently, the world of exoplanet study was not especially interdisciplinary.  Astronomers and astrophysicists searched for distant planets and when they succeeded came away with some measures of planetary masses, their orbits, and sometimes their densities.  It was only in recent years, with the advent of a serious search for exoplanets with the potential to support life,  that it became apparent that chemists (astrochemists, that is), planetary and stellar scientists,  cloud specialists, geoscientists and more were needed at the table.

Universities were the first to create more wide-ranging exoplanet centers and studies, and by now there are a number of active sites here and abroad.  NASA formally weighed in one year ago with the creation of the Nexus for Exoplanet System Science (NExSS) — an initiative which brought together 17 university and research center teams with the goal of supercharging exoplanet studies, or at least to see if a formal, national network could produce otherwise unlikely collaborations and science.

That network is virtual, unpaid, and comes with no promises to the scientists.  Still, NASA leaders point to it as an important experiment, and some interesting collaborations, proposals and workshops have come out of it.

“A year is a very short time to judge an effort like this,” said Douglas Hudgins, program scientist for NASA’s Exoplanet Exploration Program, and one of the NASA people who helped NExSS come into being.

“Our attitude was to pull together a group of people, do our best to give them tool to work well together, let them have some time to get to know each other, and see what happens.  One year down the road, though, I think NExSS is developing and good ideas are coming out of it.”

 

Illustration of what a sunset might look like on a moon orbiting Kepler 47c and its two suns. (Softpedia)

Illustration of what a sunset might look like on a moon orbiting Kepler 47c and its two suns.

Read more