Tag: MIT

For First Time, Tiny CubeSat Locates a Distant Exoplanet

 

The image above, courtesy of NASA’s Jet Propulsion Laboratory, shows the CubeSat ASTERIA as it was being launched from the International Space Station in 2017.

The size of a briefcase, ASTERIA is part of a growing armada of tiny spacecraft being launched around the world and adding an increasingly important (and inexpensive) set of new tools for conducting Earth, space and exoplanet science.

ASTERIA, for instance, was designed to perform some of the complex tasks much larger space observatories use to study distant exoplanets outside our solar system.   And a new paper soon to be published in the Astronomical Journal describes how ASTERIA (short for Arcsecond Space Telescope Enabling Research in Astrophysics) didn’t just demonstrate it could perform those tasks but went above and beyond, detecting the known exoplanet 55 Cancri e.

While it was not the first detection of that exoplanet — which orbits close to its host star 41 light years away — it was the first time that a CubeSat had measured the presence of an exoplanet, something done so far only by much more sophisticated space and ground telescopes.

“Detecting this exoplanet is exciting because it shows how these new technologies come together in a real application,” said Vanessa Bailey, who led the ASTERIA  exoplanet science team at JPL.  The project was a collaboration between JPL and the Massachusetts Institute of Technology.

“We went after a hard target with a small telescope that was not even optimized to make science detections – and we got it, even if just barely,” said Mary Knapp, the ASTERIA project scientist at MIT’s Haystack Observatory and lead author of the study. “I think this paper validates the concept that motivated the ASTERIA mission: that small spacecraft can contribute something to astrophysics and astronomy.”  Both made their comments in a JPL release.

 

Artist rendering of planet Cancri 55 e. (NASA; JPL/Caltech)

 

ASTERIA was originally designed to spend 90 days in space.  But it received three mission extensions before the team lost contact with the satellite in late 2019.

The mission was not even designed to look for exoplanets.  It was, rather, a technology demonstration, with the mission’s goal to develop new capabilities for future missions. The team’s technological leap was to build a small spacecraft that could conduct fine pointing control — essentially the ability to stay focused very steadily on a distant star for long periods.… Read more

A Southern Sky Extravaganza From TESS

Candidate exoplanets as seen by TESS in a southern sky mosaic from 13 observing sectors. (NASA/MIT/TESS)

NASA’s Transiting Exoplanet Survey Satellite (TESS) has finished its one year full-sky observation of  Southern sky and has found hundreds of candidate exoplanets and 29 confirmed planets.  It is now maneuvering  its array of wide-field telescopes and cameras to focus on the northern sky to do the same kind of exploration.

At this turning point, NASA and the Massachusetts Institute of Technology — which played a major role in designing and now operating the mission — have put together mosaic images from the first year’s observations, and they are quite something.

Constructed from 208 TESS images taken during the mission’s first year of science operations, these images are a unique  space-based look at the entire Southern sky — including the Milky Way seen edgewise, the Large and Small Magellenic galaxies, and other large stars already known to have exoplanet.

“Analysis of TESS data focuses on individual stars and planets one at a time, but I wanted to step back and highlight everything at once, really emphasizing the spectacular view TESS gives us of the entire sky,” said Ethan Kruse, a NASA Postdoctoral Program Fellow who assembled the mosaic at NASA’s Goddard Space Flight Center.

Overlaying the figures of selected constellations helps clarify the scale of the TESS southern mosaic. TESS has discovered 29 exoplanets, or worlds beyond our solar system, and more than 1,000 candidate planets astronomers are now investigating. NASA/MIT/TESS

The mission is designed to vastly increase the number of known exoplanets, which are now theorized to orbit all — or most — stars in the sky.

TESS searches for  the nearest and brightest main sequence stars hosting transiting exoplanets, which are the most favorable targets for detailed investigations.

This animation shows how a dip in the observed brightness of a star may indicate the presence of a planet passing in front of it, an occurrence known as a transit. This is how TESS identified planet.
(NASA’s Goddard Space Flight Center)

While previous sky surveys with ground-based telescopes have mainly detected giant exoplanets, TESS will find many small planets around the nearest stars in the sky.  The mission will also provide prime targets for further characterization by the James Webb Space Telescope, as well as other large ground-based and space-based telescopes of the future.

The TESS observatory uses an array of wide-field cameras to perform a survey of 85% of the sky.… Read more

© 2020 Many Worlds

Theme by Anders NorenUp ↑