Artist illustration of the BepiColombo orbiters, MIO and Bepi, around Mercury (JAXA).

This Friday (October 19) at 10:45pm local time in French Guinea, a spacecraft is set to launch for Mercury. This is the BepiColombo mission which will begin its seven year journey to our solar system’s innermost planet. Surprisingly, the science goals for investigating this boiling hot world are intimately linked to habitability.

Mercury orbits the sun at an average distance of 35 million miles (57 million km); just 39% of the distance between the sun and the Earth. The planet therefore completes a year in just 88 Earth days.

The close proximity to the sun puts Mercury in a 3:2 tidal lock, meaning the planet rotates three times for every two orbits around the sun. (By contrast, our moon is in a 1:1 tidal lock and rotates once for every orbit around the Earth.) With only a tenuous atmosphere to redistribute heat, this orbit results in extreme temperatures between about -290°F and 800°F (-180°C to 427°C). The overall picture is one of the most inhospitable of worlds, so what do we hope to learn from this barren and baked land?

BepiColombo is a joint mission between the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA). It consists of two orbiters, one built by each space agency. The mission is named after Giuseppe “Bepi” Colombo, an Italian mathematician who calculated the orbit of the first mission to Mercury —NASA’s Mariner 10— such that it could make repeated fly-bys of the planet.

When Mariner 10 reached Mercury in the mid-1970s, it made an astonishing discovery:  the planet had a weak magnetic field. The Earth also has a magnetic field that is driven by movement in its molten iron core.

However, with a mass of only 5.5% that of the Earth, the interior of Mercury was expected to have cooled sufficiently since its formation for the core to have solidified and jammed the breaks on magnetic field generation. This is thought to have happened to Mars, which is significantly larger than Mercury with a mass around 10% that of the Earth. So how does Mercury hold onto its field?

The discoveries only got stranger with the arrival of NASA’s MESSENGER mission in 2011. MESSENGER discovery that Mercury’s magnetic field was off-set, with the center shifted northwards by a distance equal to 20% of the planet’s radius.

The mysteries also do not end with Mercury’s wonky magnetic field.… Read more “Prepare For Lift-off! BepiColombo Launches For Mercury”