Tag: JUICE

Frigid Europa Holds a Huge and Maybe Habitable Ocean Beneath Its Thick Ice Covering. How is That Possible?

Europa has one of the smoothest surface of any body in the solar system.  A moon as old as Europa that did not have an ice cover — and a likely ocean inside — would be pocked with asteroid craters.  On Europa, these craters appear to be absorbed into the icy surface via geologic and thermal processes.  Giant lakes trapped in Europa’s crust also bust up the icy surface. (NASA)

Jupiter’s moon Europa is almost five times as far away from the sun as Earth is, with surface temperatures that don’t rise above minus 260 degrees Fahrenheit.  It’s slightly smaller than our moon and orbits but 400,000 miles from the solar system’s largest planet, which it takes but 3.5 Earth days to orbit.  As a result it is tidally locked, always showing the same face to Jupiter.

When it comes to potentially habitable objects in our solar system, Europa would not seem to be a terribly likely possibility.

But, of course, it is.  And in three years NASA’s Europa Clipper mission will launch to explore what would appear to be one of the most unlikely yet possible places in our solar system to find potential signs of life.

The reason why is that scientists are almost certain that under Europa ‘s 10-to 15 mile ice covering is a deep, global ocean of salty water.

The size of the ocean has not been well determined yet, with estimates of between 40 and 100 miles of depth.  But a  consensus has been reached that the ocean is likely to be global, and contains two to three times as much liquid water as found on Earth.

This then raises a question with great significance for Europa, other moons in the solar system and quite likely planets and moons well beyond us:  How can there be so much liquid water inside such frigid places?

The spot toward the lower left is one Europa, against the backdrop of Jupiter.  Images from Voyager in 1979 bolster the modern hypothesis that Europa has an underground ocean and is therefore a good place to look for extraterrestrial life. The dark spot on the upper right is a shadow of another of Jupiter’s large moons. Sixteen frames from Voyager 1’s 1979 Jupiter flyby were recently reprocessed and merged to create this image.  (NASA, Voyager 1, JPL, Caltech; Processing & License: Alexis Tranchandon / Solaris)

There are numerous possible answers to that question, and it’s likely that all or most played some role.… Read more

Icy Moons and Their Plumes

The existence of water or water vapor plumes on Europa has been studied for years, with a consensus view that they do indeed exist.  Now NASA scientists have their best evidence so far that the moon does sporadically send water vapor into its atmosphere.  (NASA/ESA/K. Retherford/SWRI)

Just about everything that scientists see as essential for extraterrestrial life — carbon, hydrogen, oxygen, nitrogen, phosphorus, sulfur and sources of energy — is now known to be pretty common in our solar system and beyond.  It’s basically there for the taking  by untold potential forms of life.

But what is not at all common is liquid water.  Without liquid water Earth might well be uninhabited and today’s Mars, which was long ago significantly wetter, warmer and demonstrably habitable,  is widely believed to be uninhabited because of the apparent absence of surface water (and all that deadly radiation, too.)

This is a major reason why the discovery of regular plumes of water vapor coming out of the southern pole of Saturn’s moon Enceladus has been hailed as such a promising scientific development.  The moon is pretty small, but most scientists are convinced it does have an under-ice global ocean that feeds the plume and just might support biology that could be collected during a flyby.

But the moon of greatest scientific interest is Europa, one of the largest that orbits Jupiter.  It is now confidently described as having a sub-surface ocean below its crust of ice and — going back to science fiction writer extraordinaire Arthur C. Clarke — has often been rated the most likely body in our solar system to harbor extraterrestrial life.

That is why it is so important that years of studying Europa for watery plumes has now paid off.   While earlier observations strongly suggested that sporadic plumes of water vapor were in the atmosphere, only last month was the finding nailed, as reported in the journal Nature Astronomy.

“While scientists have not yet detected liquid water directly, we’ve found the next best thing: water in vapor form,” said Lucas Paganini, a NASA planetary scientist who led the water detection investigation.

 

As this cutaway shows, vents in Europa’s icy crust could allow plumes of water vapor to escape from a sub-surface ocean. If observed up close, the chemical components of the plumes would be identified and could help explain the nature and history of the ocean below. ( NASA) 

The amount of water vapor found in the European atmosphere wasn’t great — about an Olympic-sized pool worth of H2O.  … Read more

© 2023 Many Worlds

Theme by Anders NorenUp ↑