Tag: hayabusa

Captured on Oct. 20 during the OSIRIS-REx mission’s Touch-And-Go (TAG) sample collection, the NASA spacecraft approached and touches down on asteroid Bennu’s surface. The dramatic sampling event, a NASA first,  brought the spacecraft down to sample site Nightingale.  The team on Earth received confirmation of successful touchdown at 6:08 p.m. EDT. (NASA/Goddard/University of Arizona)

Over 200 million miles away,  NASA’s OSIRIS-REx spacecraft on Tuesday unfurled its robotic arm and descended to the surface of the asteroid Bennu.  It appeared to crush some rock as it touched down, quickly fired some nitrogen gas to kick up the sample and then after 5 or 6 seconds it flew away to safety after a back-away burn.

One day after the “tag,” NASA officials announced that the sample collection appeared to have been it to be a successful,  and they released images and video of the dramatic scoop.  The spacecraft touched down within three feet of the Nightingale target location and NASA officials said that most of the sample collection occurred in the first three seconds.

The sample will consist of grains of a surface that has experienced none of the ever-active geology on Earth,  no modifications caused by life,  and little of the erosion and weathering.  In other words, it will be a sample of the very early solar system from which our planet arose.

The asteroid visit is the first ever accomplished by NASA, following in the path set by the Japan Aerospace Exploration Agency (JAXA) and its two Hayabusa missions.

“This amazing first for NASA demonstrates how an incredible team from across the country came together and persevered through incredible challenges to expand the boundaries of knowledge,” said NASA Administrator Jim Bridenstine. “Our industry, academic, and international partners have made it possible to hold a piece of the most ancient solar system in our hands.”

Artist rendering for OSIRIS-REX spacxecrsft as it approaches the asteroid Bennu to collect a sample and quickly depart. The “tag” took place on Oct. 20. (NASA)

While it remains somewhat unclear how much sample was collected by OSIRIS-REx, the mission’s principal investigator,  Dante Lauretta of the University of Arizona, said he was optimistic.

The sampling mechanism touched down in part on a rock about 8 inches wide, something that could have prevented the gathering mechanism from pressing up properly against the surface.

“I must have watched about a hundred times last night,” Lauretta, said during a news conference on Wednesday.

Read more

Ceres, Asteroids And Us

Ceres, as imaged by the spacecraft Dawn on a high altitude orbit 900 miles from the surface. The several bright spots on the asteroid have been of particular interest to scientists and are believed to contain salts and ice. The image is mosaic formed from a series of images.  (NASA/JPL-Caltech)

For most of us, asteroids exist primarily as a threat.  An asteroid that landed around the Yucatan peninsula, after all, is generally considered to have set into motion the changes that resulted in the elimination of the dinosaurs.

Other large in-coming asteroids laid waste to swaths of Siberia in 1908, dug the world’s largest crater (118 mile wide)  in South Africa long ago, and formed the Chesapeake Bay a mere 35 million years past.  And another large asteroid will almost certainly threaten Earth again some day.

There is, however, a reverse and possibly life-enhancing side to the asteroid story, one that is becoming more clear and intriguing as we learn more about them where they live.  Asteroids not only contain a lot of water — some of it possibly delivered long ago to a dry Earth — but they contain some pretty complex organic molecules, the building blocks of life.

The latest chapter in the asteroid saga is being written about Ceres, the largest asteroid in the solar system and recently declared to also be a dwarf planet (like Pluto.)

Using data from NASA’s Dawn spacecraft, a team led by the National Institute for Astrophysics in Rome and  the University of California, Los Angeles identified a variety of complex organic compounds, amino acids and nucleobases  — the kind that are the building blocks of life.  The mission has also detected signs of a possible subsurface ocean as well as cryovolcanos, which spit out ice, water, methane and other gases instead of molten rock.

“This discovery of a locally high concentration of organics is intriguing, with broad implications for the astrobiology community,” said Simone Marchi, a senior research scientist at Southwest Research Institute and one of the authors of the paper in Science. “Ceres has evidence of ammonia-bearing hydrated minerals, water ice, carbonates, salts, and now organic materials.”

He said that the organic-rich areas include carbonates and ammonia-based minerals, which are Ceres’ primary constituents.  Their presence along with the organics makes it unlikely that the organics arrived via another asteroid.

In an accompanying comment in the Feb. 16 edition of Science, Michael Küppers of the European Space Astronomy Center in Madrid makes the case that Ceres might once have even been habitable.… Read more

© 2020 Many Worlds

Theme by Anders NorenUp ↑