Tag: Goddard Space Flight Center

The Amazing Unfurling Of The James Webb Space Telescope

The last view of the JWST and its unfurled solar arrays after it separated from the Ariane 5 launch vehicle and started it’s month-long and extraordinarily complicated deployment. (NASA)

Over the next three weeks-plus, the James Webb Space Telescope will play out an unfurling and deployment in deep space unlike anything this world has seen before.

It took decades to perfect the observatory — a segmented telescope on a heat shield  the length of a tennis court that was squeezed for launch into a rocket payload compartment less than 30 feet in diameter.  The unfurling has begun and will continue over 25 more days, with 50 major deployments and 178 release mechanisms to set the pieces free.

The process has been likened to the undoing of an origami creation, or like the opening of a massive, many-featured Swiss army knife but without a human to pull the parts out.

Adding to the stress of these days,  the JWST will be much further out into space than the Hubble Space Telescope, which is in a very close orbit around the Earth at an altitude of about 340 miles.  The JWST will be over 930,000 miles away from Earth at the stable orbital point called the second Lagrange point 2 (L2) — way too far away for any manual fixes or upgrades like the ones accomplished by astronauts for the Hubble.

Four days after liftoff, the observatory has unfurled some of its solar panels, has deployed some of the pallet that will hold the sunshield and has extended the tower assembly about 6 feet from its storage space.   Here is a video from the Goddard Space Flight Center illustrating all the steps needed to make JWST whole:

 

And here is a more detailed depiction of the many stages of deployment, what is being deployed and how.

JWST will  have the largest telescope mirror ever sent into space — 21 feet in diameter compared with the Hubble’s 8-foot diameter.  Because it is so large, it had to be divided into 18 hexagonal segments of the lightweight element beryllium, each one roughly the size of a coffee table. Together, the segments must align almost perfectly, moving in alignment within a fraction of a wavelength of light.

Webb mission systems engineer Mike Menzel, of NASA’s Goddard Space Flight Center, said in a deployment-explaining video called “29 Days on the Edge” that every single releases and deployment must work.… Read more

The Stellar Side of The Exoplanet Story

K2-33b, shown in this illustration, is one of the youngest exoplanets detected to date. It makes a complete orbit around its star in about five days. Credits: NASA/JPL-Caltech

K2-33b, shown in this illustration, is one of the youngest exoplanets detected to date. It makes a complete orbit around its star in about five days, and as a result its characteristics are very much determined by its host. (NASA/JPL-Caltech)

 

When it comes to the study of exoplanets, it’s common knowledge that the host stars don’t get much respect.

Yes, everyone knows that there wouldn’t be exoplanets without stars, and that they serve as the essential background for exoplanet transit observations and as the wobbling object that allows for radial velocity measurements that lead to new exoplanets discoveries.

But stars in general have been seen and studied for ever, while the first exoplanet was identified only 20-plus years ago.  So it’s inevitable that host stars have generally take a back seat to the compelling newly-found exoplanets that orbit them.

As the field of exoplanet studies moves forward, however, and tries to answer questions about the characteristics of the planets and their odds of being habitable, the perceived importance of the host stars is on the rise.

The logic:  Stars control space weather, and those conditions produce a space climate that is conducive or not so conducive to habitability and life.

Space weather consists of a variety of enormously energetic events ranging from solar wind to solar flares and coronal mass ejections, and their characteristics are defined by the size, variety and age of the star.  It is often said that an exoplanet lies in a “habitable zone” if it can support some liquid water on its surface, but absent some protection from space weather it will surely be habitable in name only.

A recognition of this missing (or at least less well explored) side of the exoplanet story led to the convening of a workshop this week in New Orleans on “The Impact of Exoplanetary Space Weather On Climate and Habitability.”

“We’re really just starting to detect and understand the secret lives of stars,”  said Vladimir Airapetian, a senior scientist at the Goddard Space Flight Center.  He organized the highly interdisciplinary workshop for the Nexus for Exoplanet Space Studies (NExSS,) a NASA initiative.

“What has become clear is that a star affects and actually defines the character of a planet orbiting around it,” he said.  “And now we want to look at that from the point of view of astrophysicists, heliophysicists, planetary scientists and astrobiologists.”

William Moore, principal investigator for a NASA-funded team also studying how host stars affect their exoplanets, said the field was changing fast and that “trying to understand those (space weather) impacts has become an essential task in the search for habitable planets.”… Read more

Movement in The Search For ExoLife

A notional version of an observatory for the 2030s that could provide revolutionary direct imaging of exoplanets. GSFC/JPL/STScI

A notional version of an observatory for the 2030s that could provide revolutionary direct imaging of exoplanets. GSFC/JPL/STScI

Assuming for a moment that life exists on some exoplanets, how might researchers detect it?

This is hardly a new question.  More than ten years ago, competing teams of exo-scientists and engineers came up with proposals for a NASA flagship space observatory capable of identifying possible biosignatures on distant planets. No consensus was reached, however, and no mission was developed.

But early this year, NASA Astrophysics Division Director Paul Hertz announced the formation of four formal Science and Technology Definition Teams to analyze proposals for a grand space observatory for the 2030s.  Two of them in particular would make possible the kind of super-high resolution viewing needed to understand the essential characteristics of exoplanets.  As now conceived, that would include a capability to detect molecules in distant atmospheres that are associated with living things.

These two exo-friendly missions are the Large Ultraviolet/Optical/Infrared (LUVOIR) Surveyor and the Habitable Exoplanet (HabEx) Imaging Mission.   Both would be on the scale of, and in the tradition of, scientifically and technically ground-breaking space observatories such as the Hubble and the James Webb Space Telescope, scheduled to launch in 2018.  These flagship missions provide once in a decade opportunities to move space science dramatically forward, and not-surprisingly at a generally steep cost.

 

A simulated spiral galaxy as viewed by Hubble, and the proposed High Definition Space Telescope (HDST) at a lookback time of approximately 10 billion years (z = 2) The renderings show a one-hour observation for each space observatory. Hubble detects the bulge and disk, but only the high image quality of HDST resolves the galaxy’s star-forming regions and its dwarf satellite. The zoom shows the inner disk region, where only HDST can resolve the star-forming regions and separate them from the redder, more distributed old stellar population. Image credit: D. Ceverino, C. Moody, G. Snyder, and Z. Levay (STScI)500 light years away, as imaged by Hubble and potential of the kind of telescope the exoplanet community is working towards.

A simulated spiral galaxy as viewed by Hubble, and as viewed by the kind of high definition space telescope now under study.   Hubble detects the bulge and disk, but only the high definition image resolves the galaxy’s star-forming regions and its dwarf satellite. The zoom shows the inner disk region, where only high definition can resolve the star-forming regions and separate them from the redder, more distributed old stellar population. (D. Ceverino, C. Moody, G. Snyder, and Z. Levay (STScI)

 

Because the stakes are so high, planning and development takes place over decades — twenty years is the typical time elapsed between the conception of a grand flagship mission and its launch.  So while what is happening now with the science and technology definition teams  is only a beginning — albeit one with quite a heritage already — it’s an essential, significant and broadly-supported start.  Over the next three years, the teams will undertake deep dives into the possibilities and pitfalls of LUVOIR and HabEx, as well as the two other proposals.  There’s a decent chance that a version of one of the four will become a reality.… Read more

© 2023 Many Worlds

Theme by Anders NorenUp ↑