Astronauts in a mock-up of the Orion space capsule, which NASA plans to use in some form as a deep-space vehicle. (NASA)

 

We all know that human space travel is risky. Always has been and always will be.

Imagine, for a second, that you’re an astronaut about to be sent on a journey to Mars and back, and you’re in a capsule on top of NASA’s second-generation Space Launch System designed for that task.

You will be 384 feet in the air waiting to launch (as tall as a 38-floor building,) the rocket system will weigh 6.5 million pounds (equivalent to almost nine fully-loaded 747 jets) and you will take off with 9.2 million pounds of thrust (34 times the total thrust of one of those 747s.)

Given the thrill and power of such a launch and later descent, everything else seemed to pale in terms of both drama and riskiness.  But as NASA has been learning more and more, the risks continue in space and perhaps even increase.

We’re not talking here about a leak or a malfunction computer system; we’re talking about absolutely inevitable risks from cosmic rays and radiation generally — as well as from micro-gravity — during a long journey in space.

Since no human has been in deep space for more than a short time, the task of understanding those health risks is very tricky and utterly dependent on testing creatures other than humans.

The most recent results are sobering.  A NASA-sponsored team at Georgetown University Medical Center in Washington looked specifically at what could happen to a human digestive system on a long Martian venture, and the results were not reassuring.

Their results, published in the Proceedings of the National Academy of Sciences  (PNAS), suggests that deep space bombardment by galactic cosmic radiation and solar particles could significantly damage gastrointestinal tissue leading to long-term functional changes and problems. The study also raises concern about high risk of tumor development in the stomach and colon.

 

Galactic cosmic rays are a variable shower of charged particles coming from supernova explosions and other events extremely far from our solar system. The sun is the other main source of energetic particles this investigation detects and characterizes. The sun spews electrons, protons and heavier ions in “solar particle events” fed by solar flares and ejections of matter from the sun’s corona. Magnetic fields around Earth protect the planet from most of these heavy particles, but astronauts do not have that protect beyond low-Earth orbit.

Read more