Tag: extraterrestrial life

Did Ancient Mars Life Kill Itself Off?

The study revealed that while ancient Martian life may have initially prospered, it would have rendered the planet’s surface covered in ice and uninhabitable, under the influence of hydrogen consumed by microbes and methane released by them into the atmosphere. (Boris Sauterey and Regis Ferrière)

The presence of life brings many unexpected consequences.

On Earth, for instance, when cyanobacteria spread widely in ancient oceans more than two billion years ago, their production of increasingly large amounts of oxygen killed off much of the other anaerobic life present at the day because oxygen is a toxin, unless an organism  finds ways to adapt.   One of the first global ices followed because of the changed chemistry of the atmosphere.

Now a group of researchers at the University of Arizona has modeled a similar dynamic that could have potentially taken place on early Mars.

As the group reports in the journal Nature Astronomy, their work has found that if microbial life was present on a wetter and warmer ancient Mars — as some now think  that it potentially was — then it would almost certainly have lived below the surface.  The rock record shows that the atmosphere would then have consisted largely of carbon dioxide and hydrogen, which would have warmed the planet with a greenhouse effect.

By using a model that takes into account how processes occurring above and below ground influence each other, they were able to predict the climatic feedback of the change in atmospheric composition caused by the biological activity of these microbes.

In a surprising twist, the study revealed that while ancient Martian life may have initially prospered, its chemical feedback to the atmosphere would have kicked off a global cooling of the planet by the methanogen’s use of the atmospheric hydrogen for energy and the production of methane as a byproduct.

That replacement of hydrogen with methane ultimately would render its surface uninhabitable and drive life deeper and deeper underground, and possibly to extinction.

“According to our results, Mars’ atmosphere would have been completely changed by biological activity very rapidly, within a few tens or hundreds of thousands of years,” said Boris Sauterey, a former postdoctoral student at the University of Arizona who is now a fellow at Sorbonne Université in Paris. .

“By removing hydrogen from the atmosphere, microbes would have dramatically cooled down the planet’s climate.”

Jezero Crater is where the Perseverance rover has been exploring since landing in early 2021.

Read more

NASA Should Build a Grand Observatory Designed to Search For Life Beyond Earth, Top Panel Concludes

The National Academy of Sciences has released it’s “Decadal Survey,” with guidance and recommendations for the fields of astronomy, astrobiology and astrophysics.(NASA)

NASA should begin developing a mission that can tell us whether life in the near galaxy is abundant, rare or essentially absent, The National Academy of Sciences recommended yesterday.

The call for a next Grand Observatory telescope with this ambitious goal represents the first time that the Academy, in its Decadal Survey for Astronomy and Astrophysics, has given top priority to the science of  exoplanets and the search for life far beyond Earth.

The long-awaited NAS survey did not select a single mission concept, although several NASA-commissioned studies were extensively researched and assembled for the Decadal over the past four years.

Rather, they set the science goal of giving an answer – as complete as possible – to the eternally-asked question of whether life exists solely on Earth or can be found on the billions of other planets we now know orbit their own suns.

Decadal steering committee co-chair Robert Kennicutt Jr., a professor at University of Arizona and Texas A & M University, said that a flood of discoveries and astronomical and technological advances in recent decades made clear that the time for such a mission had come.

“We’re laying down a marker here,” Kennicutt said  in a press conference.  “We think that progress in this field has taken us to the point that within the planning horizon of this survey, we can really contemplate imaging  Earth-like planets in their habitable zones around other stars and spectroscopically studying them for atmospheric composition, perhaps including biomarkers. with the ultimate goal of answering one of the most profound questions:  Are we alone in the universe?”

The proposed mission, he said, would as a result have the transformative scientific power of the Hubble Space Telescope and the James Webb Space Telescope, which is scheduled to launch next month.  It would change the way that scientists and citizens see the world.

The telescope envisioned by Decadal Survey would search for small rocky planets in the habitable zone of heir sun — where the temperatures would allow for liquid water to exist rather than just water vapor or ice.  This artist’s concept ia of Kepler-452b, the first near-Earth-size world found in the habitable zone of a distant sun-like star. ( NASA/Ames/JPL-Caltech.)

But the road to an actual mission will be long and definitely uphill.… Read more

Will The Habitable Exoplanet Observatory (HabEx) — Or Something Like It — Emerge As NASA’s Next Great Observatory?

Artist impression of HabEx spacecraft and a deployed starshade 47,000 miles away, with an exoplanet made visible by the starshade’s blocking of stellar light. (NASA)

Some time later this summer, it is predicted, the National Academy of Sciences will release its long-awaited Decadal Survey for astrophysics, which is expected to recommend the science and architecture that NASA should embrace for its next “Great Observatory.”

Many Worlds earlier featured one of the four concepts in the running — LUVOIR or the Large UV/Optical/IR Surveyor.  With a segmented mirror potentially as wide as 50 feet in diameter, it would revolutionize the search for habitable exoplanets and potentially could detect one (or many) distant planets likely to support life.

Proposed as a “Great Observatory” for the 2030s in the tradition of the Hubble Space Telescope and the James Webb Space Telescope (scheduled to launch later this year), LUVOIR would allow for transformative science of not only exoplanets but many other fields of astronomy as well.

Also under serious consideration is the Habitable Exoplanet Observatory, HabEx, which would also bring unprecedented capabilities to the search for life beyond Earth.  Its mirror would be considerably smaller than that proposed for LUVOIR and it would have fewer chances to find an inhabited world.

But it is nonetheless revolutionary in terms of what it potentially can do for exoplanet science and it could come with a second spacecraft that seems to be out of science fiction,  designed to block out starlight so exoplanets nearby can be observed. That 52-meter (or 170-foot) petal-rimmed, light-blocking disc is called a starshade or an occulter, and it would fly 76,600 kilometers (or 47,000 miles) away from the HabEx spacecraft and would work in tandem with the telescope to make those close-in exoplanet observations possible.

While the capabilities of HabEx are fewer compared to LUVOIR and the potential harvest of habitable or inhabited planets is less, HabEx nonetheless would be cutting edge and significantly more capable than the Hubble Space Telescope in nearly every way, while also being less expensive than LUVOIR and requiring less of a technology reach.

Scott Gaudi, an Ohio State University astronomer, was co-chair of the NASA-created team that spent three years studying, engineering and then proposing the HabEx concept. He put the potential choice between HabEx and LUVOIR this way:  “Do you want to take a first step or a first leap?  HabEx is a major step; LUVOIR is a huge leap.”… Read more

UFOs, Redux

A U.S. government report found that there was no evidence to conclude that the more than 140 unidentified flying object sightings in recent years involved extraterrestrial beings.

The government was unable to determine whether the flying mysteries were atmospheric events distorting readings from sensors, confusions in judging objects in motion, spacecraft from other potential hostile or whether the objects were extraterrestrial in origin.

But the long-anticipated report released Friday by the nation’s top intelligence official made clear that although the presence of aliens couldn’t be 100 percent ruled out, there was no evidence at all that they were commanding the UFOs.

Here is a link to the full report.

And here is the Many Worlds take of on the UFO issue from earlier this month:

Sure UFOs Exist  But There’s No Reason to Conclude That Aliens Are Flying Them

Read more

The Habitable Zone Gets Poked, Tweaked and Stretched to the Limits

To find another planet like Earth, astronomers are focusing on the "Goldilocks" or habitable zone around stars--where it's not too hot and not too cold for liquid water to exist on the surface. (NASA)

To find another planet like Earth, astronomers are focusing on the “Goldilocks” or habitable zone around stars–where it’s not too hot and not too cold for liquid water to exist on the surface. (NASA)

For more than 20 years now — even before the first detection of an extra-solar planet — scientists have posited, defined and then debated the existence and nature of a habitable zone.  It’s without a doubt a central scientific concept, and  the idea has caught on with the public (and the media) too.  The discovery of “habitable zone planets” has become something of a staple of astronomy and astrophysics.

But beneath the surface of this success is a seemingly growing discomfort about how the term is used. Not only do scientists and the general public have dissimilar understandings of what a habitable zone entails, but scientists have increasingly divergent views among themselves as well.

And all this is coming to the fore at a time when a working definition of the habitable zone is absolutely essential to planning for what scientists and enthusiasts hope will be a long-awaited major space telescope focused first and foremost on exoplanets.  If selected by NASA as a flagship mission for the 2030s, how such a telescope is designed and built will be guided by where scientists determine they have the best chance of finding signs of extraterrestrial life — a task that has ironically grown increasingly difficult as more is learned about those distant solar systems and planets.

Most broadly, the habitable zone is the area around a star where orbiting planets could have conditions conducive to life.  Traditionally, that has mean most importantly orbiting far enough from a star that it doesn’t become a desiccated wasteland and close enough that it is not forever frozen.  In this broad definition, the sometimes presence of liquid water on the surface of a planet is the paramount issue in terms of possible extraterrestrial life.

 The estimated habitable zones of A stars, G stars and M stars are compared in this diagram. More refinement is needed to better understand the size of these zones. Image credit: NASA/JPL-Caltech/MSSS.


The estimated habitable zones of A stars, G stars and M stars are compared in this diagram. More refinement is needed to better understand the size of these zones. Image credit: NASA/JPL-Caltech/MSSS.

It was James Kasting of Penn State University, Daniel Whitmire, then of Louisiana State University, and Ray Reynolds of NASA’s Ames Research Center who defined the modern outlines of a habitable zone, though others had weighed in earlier.  But Kasting and the others wrote with greater detail and proposed a model that took into account not only distance from the host star, but also the presence of planetary systems that could maintain relatively stable climates by cycling essential compounds.… Read more

Movement in The Search For ExoLife

A notional version of an observatory for the 2030s that could provide revolutionary direct imaging of exoplanets. GSFC/JPL/STScI

A notional version of an observatory for the 2030s that could provide revolutionary direct imaging of exoplanets. GSFC/JPL/STScI

Assuming for a moment that life exists on some exoplanets, how might researchers detect it?

This is hardly a new question.  More than ten years ago, competing teams of exo-scientists and engineers came up with proposals for a NASA flagship space observatory capable of identifying possible biosignatures on distant planets. No consensus was reached, however, and no mission was developed.

But early this year, NASA Astrophysics Division Director Paul Hertz announced the formation of four formal Science and Technology Definition Teams to analyze proposals for a grand space observatory for the 2030s.  Two of them in particular would make possible the kind of super-high resolution viewing needed to understand the essential characteristics of exoplanets.  As now conceived, that would include a capability to detect molecules in distant atmospheres that are associated with living things.

These two exo-friendly missions are the Large Ultraviolet/Optical/Infrared (LUVOIR) Surveyor and the Habitable Exoplanet (HabEx) Imaging Mission.   Both would be on the scale of, and in the tradition of, scientifically and technically ground-breaking space observatories such as the Hubble and the James Webb Space Telescope, scheduled to launch in 2018.  These flagship missions provide once in a decade opportunities to move space science dramatically forward, and not-surprisingly at a generally steep cost.

 

A simulated spiral galaxy as viewed by Hubble, and the proposed High Definition Space Telescope (HDST) at a lookback time of approximately 10 billion years (z = 2) The renderings show a one-hour observation for each space observatory. Hubble detects the bulge and disk, but only the high image quality of HDST resolves the galaxy’s star-forming regions and its dwarf satellite. The zoom shows the inner disk region, where only HDST can resolve the star-forming regions and separate them from the redder, more distributed old stellar population. Image credit: D. Ceverino, C. Moody, G. Snyder, and Z. Levay (STScI)500 light years away, as imaged by Hubble and potential of the kind of telescope the exoplanet community is working towards.

A simulated spiral galaxy as viewed by Hubble, and as viewed by the kind of high definition space telescope now under study.   Hubble detects the bulge and disk, but only the high definition image resolves the galaxy’s star-forming regions and its dwarf satellite. The zoom shows the inner disk region, where only high definition can resolve the star-forming regions and separate them from the redder, more distributed old stellar population. (D. Ceverino, C. Moody, G. Snyder, and Z. Levay (STScI)

 

Because the stakes are so high, planning and development takes place over decades — twenty years is the typical time elapsed between the conception of a grand flagship mission and its launch.  So while what is happening now with the science and technology definition teams  is only a beginning — albeit one with quite a heritage already — it’s an essential, significant and broadly-supported start.  Over the next three years, the teams will undertake deep dives into the possibilities and pitfalls of LUVOIR and HabEx, as well as the two other proposals.  There’s a decent chance that a version of one of the four will become a reality.… Read more

The Exoplanet Era

Many, and perhaps most stars have solar systems with numerous planets, as in this artist rendering of Kepler 11. (NASA)

Throughout the history of science, moments periodically arrive when new fields of knowledge and discovery just explode.

Cosmology was a kind of dream world until Edwin Hubble established that the universe was expanding, and doing so at an ever-faster rate. A far more vibrant and scientific discipline was born. On a more practical level, it was only three decades ago that rudimentary personal computers were still a novelty, and now computer-controlled, self-driving cars are just on the horizon. And not that long ago, genomics and the mapping of the human genome also went into hyperspeed, and turned the mysterious into the well known.

Most frequently, these bursts of scientific energy and progress are the result of technological innovation, coupled with the far-seeing (and often lonely and initially unsupported) labor and insights of men and women who are simply ahead of the curve.

We are at another of those scientific moments right now, and the subject is exoplanets – the billions (or is it billions of billions?) of planets orbiting stars other than our sun.

The 20th anniversary of the breakthrough discovery of the first exoplanet orbiting a sun, 51 Pegasi B, is being celebrated this month with appropriate fanfare. But while exoplanet discovery remains active and planet hunters increasingly skilled and inventive, it is no longer the edgiest frontier.

Now, astronomers, astrophysicists, astrobiologists, planetary scientists, climatologists, heliophysicists and many more are streaming into a field made so enticing, so seemingly fertile by that discovery of the ubiquitousness of exoplanets.

The new goal: Identifying the most compelling mysteries of some of those distant planets, and gradually but inexorably finding ever-more inventive ways to solve them. This is a thrilling task on its own, but the potential prize makes it into quite an historic quest. Because that prize is the identification of extraterrestrial life.

The presence of life beyond Earth is something that humans have dreamed about forever – with a seemingly intuitive sense that there just had to be other planets out there, and that it made equal sense that some of them supported life. Hollywood was on to this long ago, but now we have the beginning technology and fast-growing knowledge to transform that intuitive sense of life out there into a working science.

The thin gauzy rim of the planet in foreground is an illustration of its atmosphere. (NASA’s Goddard Space Flight Center)

The thin gauzy rim of the planet in foreground is an illustration of its atmosphere.

Read more

© 2023 Many Worlds

Theme by Anders NorenUp ↑