Tag: Europa Clipper

Where Might Plumes of Water Vapor Come From on Icy Moons?

This illustration depicts a plume of water vapor that could potentially be emitted from the icy surface of Jupiter’s moon Europa. New research sheds light on what plumes, if they do exist, could reveal about lakes that may be inside the moon’s crust. (NASA/ESA/K. Retherford/SWRI)

It’s been some years since Europa scientists agreed that the Jovian moon has a large global ocean beneath miles of ice.  More recently, scientists have identified what they view as pockets of water surrounded by ice but much nearer the surface than the ocean below.  And there has been research as well into what may be salty, slushy pocket of water further down in the ice covering.

With NASA’s mission to Europa scheduled to launch in about two years, modeling of these all potential collections of liquid water has picked up to prepare for the Europa Clipper arrival to come.

The latest research into what the subsurface lakes on Europa may look like and how they may behave comes in a recently published paper in Planetary Science Journal.

A key finding supports the idea that water could potentially erupt above the surface of Europa either as plumes of vapor or as cryovolcanic activity —  flowing, slushy ice rather than molten lava.

Computer modeling in the paper goes further, showing that if there are eruptions on Europa, they likely come from shallow, wide lakes embedded in the ice and not from the global ocean far below.

“We demonstrated that plumes or cryolava flows could mean there are shallow liquid reservoirs below, which Europa Clipper would be able to detect,” said Elodie Lesage, Europa scientist at NASA’s Jet Propulsion Laboratory and lead author of the research.

“Our results give new insights into how deep the water might be that’s driving surface activity, including plumes. And the water should be shallow enough that it can be detected by multiple Europa Clipper instruments.”

A minimally processed version of this image was captured by JunoCam, the public engagement camera aboard NASA’s Juno spacecraft. It was taken during the mission’s close flyby earlier this fall, almost 950 miles above the moon’s surface. The raw image was processed by “citizen scientist” Navaneeth Krishnan to add enhanced color contrast that allow larger surface features to stand out more.

The question of whether or not Europa has plumes is not settled.  While the plumes coming from Saturn’s moon Enceladus have been well studied and even had a spacecraft fly through one, Europa has only some fuzzy Hubble Space Telescope, Galileo mission and ground-based telescope images that suggest a plume.… Read more

A Clue Into The Makeup of Jupiter’s Moon Europa Provided by the Greenland Ice Sheet

Double ridge ice formations seen on Europa are similar to formations detected on the Greenland Ice Sheet. This artist’s rendering shows how double ridges on the surface of Jupiter’s moon Europa may form over shallow, refreezing water pockets within the ice shell. This mechanism is based on the study of an analogous double ridge feature found on Earth’s Greenland Ice Sheet. (Justice Blaine Wainwright)

Europa’s ice crust is crossed by thousands of double ridges, pairs of long parallel raised lines with a small valleys in between, sometimes as much as hundreds of miles long and skyscraper-height tall rims. While these double ridges are ubiquitous on Europa’s surface, how they form remains something of a mystery to scientists.

Dustin Schroeder, an associate professor of geophysics at Stanford University’s School of Earth, Energy & Environmental Sciences, was working on an issue related to climate change when he saw double ridges similar to those seen on Europa here on Earth.  The ridges, in Northwest Greenland, were tiny when compared with those on Europa, but the found the same “M”-shaped crest as found everywhere on that Jovian moon.

“We were working on something totally different related to climate change and its impact on the surface of Greenland when we saw these tiny double ridges – and we were able to see the ridges go from ‘not formed’ to ‘formed,’ ” Schroeder said.

Could the double ridges be forming as a result of processes similar to those that form the double ridges on Europa?

If so, then Greenland would provide a possibly important new window into a central question about Europa:  Is that thick ice shell surrounding the subsurface ocean completely solid, or does it have what are called “water sills” within the shell?

This is important because, as the Nature Communications paper concludes, “If the same process is responsible for Europa’s double ridges, our results suggest that shallow liquid water is spatially and temporally ubiquitous across Europa’s ice shell.”

Or as Schroeder put it, “If the mechanism we see in Greenland is how these things happen on Europa, it suggests there’s water everywhere,” he said in a release.

They can make this inference because the double ridges formed in Greenland are the known, and detectable, result of the dynamics of subsurface water surrounded by the ice sheet.

Surface imagery comparison of a double ridge on Europa (a) and on Earth (b), on the Northwest Greenland Ice Sheet.

Read more

Frigid Europa Holds a Huge and Maybe Habitable Ocean Beneath Its Thick Ice Covering. How is That Possible?

Europa has one of the smoothest surface of any body in the solar system.  A moon as old as Europa that did not have an ice cover — and a likely ocean inside — would be pocked with asteroid craters.  On Europa, these craters appear to be absorbed into the icy surface via geologic and thermal processes.  Giant lakes trapped in Europa’s crust also bust up the icy surface. (NASA)

Jupiter’s moon Europa is almost five times as far away from the sun as Earth is, with surface temperatures that don’t rise above minus 260 degrees Fahrenheit.  It’s slightly smaller than our moon and orbits but 400,000 miles from the solar system’s largest planet, which it takes but 3.5 Earth days to orbit.  As a result it is tidally locked, always showing the same face to Jupiter.

When it comes to potentially habitable objects in our solar system, Europa would not seem to be a terribly likely possibility.

But, of course, it is.  And in three years NASA’s Europa Clipper mission will launch to explore what would appear to be one of the most unlikely yet possible places in our solar system to find potential signs of life.

The reason why is that scientists are almost certain that under Europa ‘s 10-to 15 mile ice covering is a deep, global ocean of salty water.

The size of the ocean has not been well determined yet, with estimates of between 40 and 100 miles of depth.  But a  consensus has been reached that the ocean is likely to be global, and contains two to three times as much liquid water as found on Earth.

This then raises a question with great significance for Europa, other moons in the solar system and quite likely planets and moons well beyond us:  How can there be so much liquid water inside such frigid places?

The spot toward the lower left is one Europa, against the backdrop of Jupiter.  Images from Voyager in 1979 bolster the modern hypothesis that Europa has an underground ocean and is therefore a good place to look for extraterrestrial life. The dark spot on the upper right is a shadow of another of Jupiter’s large moons. Sixteen frames from Voyager 1’s 1979 Jupiter flyby were recently reprocessed and merged to create this image.  (NASA, Voyager 1, JPL, Caltech; Processing & License: Alexis Tranchandon / Solaris)

There are numerous possible answers to that question, and it’s likely that all or most played some role.… Read more

Icy Moons and Their Plumes

The existence of water or water vapor plumes on Europa has been studied for years, with a consensus view that they do indeed exist.  Now NASA scientists have their best evidence so far that the moon does sporadically send water vapor into its atmosphere.  (NASA/ESA/K. Retherford/SWRI)

Just about everything that scientists see as essential for extraterrestrial life — carbon, hydrogen, oxygen, nitrogen, phosphorus, sulfur and sources of energy — is now known to be pretty common in our solar system and beyond.  It’s basically there for the taking  by untold potential forms of life.

But what is not at all common is liquid water.  Without liquid water Earth might well be uninhabited and today’s Mars, which was long ago significantly wetter, warmer and demonstrably habitable,  is widely believed to be uninhabited because of the apparent absence of surface water (and all that deadly radiation, too.)

This is a major reason why the discovery of regular plumes of water vapor coming out of the southern pole of Saturn’s moon Enceladus has been hailed as such a promising scientific development.  The moon is pretty small, but most scientists are convinced it does have an under-ice global ocean that feeds the plume and just might support biology that could be collected during a flyby.

But the moon of greatest scientific interest is Europa, one of the largest that orbits Jupiter.  It is now confidently described as having a sub-surface ocean below its crust of ice and — going back to science fiction writer extraordinaire Arthur C. Clarke — has often been rated the most likely body in our solar system to harbor extraterrestrial life.

That is why it is so important that years of studying Europa for watery plumes has now paid off.   While earlier observations strongly suggested that sporadic plumes of water vapor were in the atmosphere, only last month was the finding nailed, as reported in the journal Nature Astronomy.

“While scientists have not yet detected liquid water directly, we’ve found the next best thing: water in vapor form,” said Lucas Paganini, a NASA planetary scientist who led the water detection investigation.

 

As this cutaway shows, vents in Europa’s icy crust could allow plumes of water vapor to escape from a sub-surface ocean. If observed up close, the chemical components of the plumes would be identified and could help explain the nature and history of the ocean below. ( NASA) 

The amount of water vapor found in the European atmosphere wasn’t great — about an Olympic-sized pool worth of H2O.  … Read more

NASA Panel Supports Life-Detecting Lander for Europa; Updated

Artist conception of water vapor plumes coming from beneath the thick ice of Jupiter’s moon Europa. The plumes have not been definitively detected, but Hubble Space Telescope images make public earlier this month appear to show plume activity in an area where it was detected once before.  How will this finding affect decision-making about a potential NASA Europa lander mission? (NASA)

As I prepare for the Astrobiology Science Conference (Abscicon) next week in Arizona, I’m struck by how many speakers will be discussing Europa missions, Europa science, ocean worlds and habitability under ice.  NASA’s Europa Clipper mission to orbit that moon, scheduled for launch to the Jupiter system in the mid 2020s, explains part of the interest, but so too does the unsettled fate of the Europa lander concept.

The NASA Science Definition Team that studied the Europa lander project will both give a science talk at the conference and hold an afternoon-long science community meeting on their conclusions.  The team argued that landing on Europa holds enormous scientific promise, most especially in the search for life beyond Earth.

But since the Europa lander SDT wrote its report and took its conclusions public early this year, the landscape has changed substantially.  First, in March, the Trump Administration 2018 budget eliminated funding for the lander project.  More than half a billion dollars have been spent on Europa lander research and development, but the full project was considered to be too expensive by the White House.

Administration budget proposals and what ultimately become budget reality can be quite different, and as soon as the Europa lander was cancelled supporters in Congress pushed back.  Rep. John Culberson (R-Tex.) and chair of the House subcommittee that oversees the NASA budget, replied to the proposed cancellation by saying “NASA is a strategic national asset and I have no doubt NASA will receive sufficient funding to complete the most important missions identified by the science community, including seeking out life in the oceans of Europa.”

More recently, researchers announced additional detections of plumes of water vapor apparently coming out of Europa — plumes in the same location as a previous apparent detection.  The observing team said they were confident the difficult observation was indeed water vapor, but remained less than 100 percent certain.  (Unlike for the detection of a water plume on Saturn’s moon Enceladeus, which the Cassini spacecraft photographed, measured and flew through.)

So while suffering a serious blow in the budgeting process, the case for a Europa lander has gotten considerably stronger from a science and logistics perspective. 

Read more

© 2022 Many Worlds

Theme by Anders NorenUp ↑