Tag: Eugene Parker

Evolving Views of Our Heliosphere Home

Does this model show of the actual shape of the heliosphere, with lines of magnetic fields around it? New research suggests so. The size and shape of the magnetic “force field” that protects our solar system from deadly cosmic rays has long been debated by astrophysicists. (Merav Opher, et. al)

We can’t see the heliosphere.  We know where it starts but not really where it ends.  And we are pretty certain that most stars, and therefore most planetary systems, are bounded by heliospheres, or “astropheres,” as well.

It has a measurable physical presence, but it is always changing.  And although it is hardly well known, it plays a substantial role in the dynamics of our solar system and our lives.

As it is studied further and deeper, it has become apparent that the heliosphere might be important — maybe even essential – for the existence of life on Earth and anywhere else it may exist.  Often likened to an enormous bubble or cocoon, it is the protected space in which our solar system and more exists.

Despite the fact that it is the largest physical system in the entire solar system, the heliosphere was only discovered at the dawn of the space age in the late 1950’s, when it was theorized by University of Chicago physicist Eugene Parker as being the result of what he termed the solar wind.

It took another decade for satellite measurements to confirm its existence and to determine some of its properties — that it is made up of an endless supply of charged particles that are shot off the sun — too hot to form into atoms. Together these particles,  which are superimposed with the interplanetary magnetic field, constitute the ingredients of he heliosphere.

Just as the Earth’s magnetic fields protect us from some of the effects of the Sun’s hazardous emanations, the heliosphere protects everything inside its bubble from many, though not all, of the incoming and more hazardous high-energy cosmic rays headed our way.

As measurable proof that the heliosphere does offer significant protection, when the Voyager 1 spacecraft left the heliosphere in 2012 and entered the intersellar medium, instruments onboard detected a tripling of amount of cosmic radiation suddenly hitting the spacecraft.

A comet-shaped traditional view of the structure of the heliosphere, with the sun in the middle of the circle, planets orbiting around and the solar wind trailing as the Sun orbits the Milky Way.  

Read more

“Nature Has Become More Beautiful.” Physicist Eugene Parker and his Life Unlocking Secrets Of The Sun

 

Parker with an image of the solar corona, the outermost portion of Sun’s atmosphere.  Parker brought new understanding to the nature and workings of the corona and the solar wind, which originates in the corona. (University of Chicago)

When  Eugene Parker was 16 years old,  he decided he didn’t want to spend the summer hanging out in suburban Detroit.  So Parker went up to the state capital looking to buy some tax delinquent land held by the state.

He selected a 40-acre piece of woods in far-off Cheboygan County, not far from Mackinac Island.  There was nothing on the land but trees.  He bought it with $120 from his own earlier summertime earnings.

Over the next three summers, Parker, his younger brother and sometimes a cousin and a friend constructed a log cabin on the land.  Because this was during World War II and gas was strictly rationed,  they couldn’t ask their parents for a ride up, and so they often bicycled the more than 300 miles to their homestead.

The cabin still doesn’t have electricity or indoor running water, but it has been used regularly by Parker and his family for almost 80 years.  And in many ways, that cabin reflects the basic character, the drive and the profound originality of the boy who built it and went on to become one of the great theoretical physicists of the 20th century.

The young Parker atop a birch  tree in 1943, on the site where his northern Michigan cabin would be built. (Courtesy of the Parker family.)

Eugene Parker, who passed away earlier this month at 94, has been hailed as the father of solar physics and is perhaps best known as the man who — basically single-handedly and despite many eminent critics –came up with the theory of the “solar wind,” a torrent of charged particles and magnetic fields that always and in all directions is blasting out from the Sun.

Parker’s innumerable achievements in his field, as well as his old-school civility and demeanor, earned him the first and only honor of its kind given by NASA — having a major space mission named after him while alive.

Ailing and aged 91, he nonetheless went with his family down to Florida in 2018 to watch the launch of the Parker Solar Probe — an extraordinary mission that flies through the blast furnace of the Sun’s corona in its effort to learn more about the origins of the solar wind and the forces at play that produce that still mysterious solar corona.… Read more

Touching the Sun

An illustration of NASA’s Parker Solar Probe flying past the sun. The spacecraft has a carbon-carbon heat shield (carbon fibers in a carbon matrix) that can protect it from temperatures of up to 2500 F, about the melting point of steel.  (NASA’s Goddard Space Flight Center)

The Parker Solar Probe is the stuff of superlatives and marvels.

Later this week, it will pass but 5.3 million miles from the sun — much closer than Mercury or any other spacecraft  have ever come — and it will be traveling at a top speed of 101 miles per second, the fastest human-made object ever created.

It’s designed to withstand temperatures of 2,500 degrees Fahrenheit and solar radiation 475 times the intensity at Earth orbit.

And as it reaches its perihelion, or closest pass of this orbit, it will be on only its 10th of 24 planned progressively closer solar passes.  In the years ahead, it will ultimately skim into the upper corona, the atmosphere of charged and unimaginably hot plasma that surrounds the sun and other stars.  The Parker Probe will, quite literally, touch the sun.

Something rather awe-inspiring to think about this coming Sunday, when the next pass takes place.

The mission, however, surely does not have record-setting as its goal.  Rather, those records are necessary to achieve the scientific goals — to fly close enough to the sun to understand how and where the gravity-defying force of the “solar wind” originates; to determine the structure and dynamics of the magnetic fields and switchbacks that are hotly debated as a possible source of that solar wind; and to resolve the mystery of why the sun’s corona is unexpectedly hotter than the solar “surface” below it.

“Parker Solar Probe is already telling us many important things about the sun that we didn’t know,” said Nour Raouafi, Parker Solar Probe project scientist at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland.  “We are definitely getting closer to understanding some of the big questions we had before, such as the source of the solar wind.  But we have to be mindful that in whatever we find, the Sun is always changing.”

And incidently, he said, more than 99.9 percent of all the matter in our solar system is in and around the sun.

 

Solar wind activity at different scales as imaged by the Parker Probe’s Wide-field Imager (WISPR) instrument earlier this year during.
Read more

© 2023 Many Worlds

Theme by Anders NorenUp ↑