Tag: ESA (page 1 of 2)

Icy Moons, And Exploring The Secrets They Hold

Voyager 2’s flew by the Uranian moon Miranda in 1986 and the spacecraft spent 17 minutes taking  photos to make this high-resolution portrait.  Miranda has three oval and trapezoid coronae, tectonic features whose origins remain debated. (NASA / JPL / Ted Stryk)

When it come to habitable environments in our solar system, there’s Earth, perhaps Mars billions of years ago and then a slew of ice-covered moons that are likely to have global oceans under their crusts.  Many of you are familiar with Europa (a moon of Jupiter) and Enceladus (a moon of Saturn) — which have either been explored by NASA or will be in the years ahead.

But there quite a few others icy moons that scientists find intriguing and just possibly habitable.  There is Ganymede,  the largest moon of Jupiter and larger than Mercury but only 40 percent as dense, strongly suggesting a vast supply of water inside rather than rock.

There’s Saturn’s moon Titan, which is known for its methane lakes and seas on the surface but which has a subterranean ocean as well.  There is Callisto, the second largest moon of Jupiter and an subsurface-ocean candidates and even Pluto and Ceres, now called dwarf planets that show signs of having interior oceans.

And of increasing interest are several of the icy moons of Uranus, particularly Ariel and Miranda.  Each has features consistent with a subsurface ocean and even geological activity.  Although Uranus is a distant planet, well past Jupiter and Saturn and would take more than a decade to just get there, the possibility of a future Uranus mission is becoming increasingly real.

The National Academy of Sciences (NAS) Decadal Survey for planetary science rated a Uranus mission as the highest priority in the field, and just today (Aug. 18) NASA embraced the concept.

At a NASA Planetary Science Division town hall meeting, Director Lori Glaze said the agency was “very excited” about the Uranus mission recommendation from the National Academy and that she hoped and expected some studies could be funded and begun in fiscal 2024.

If a Uranus mission is fully embraced,  it would be the first ever specifically to an ice giant system — exploring the planet and its moons.  This heightened interest reflects the fact that many in the exoplanet field now hold that ice giant systems are the most common in the galaxy and that icy moons may well be common as well.… Read more

The European Space Agency Cuts Ties to Russia On Its ExoMars Mission. But U.S-Russian Cooperation Continues on the ISS

ESA’s Rosalind Franklin rover had been set to search for signs of life on the surface of Mars, with its launch set for this year. Its future is now in doubt because of a suspension of relations with its Russian partners due to the sanctions imposed following of the Russian invasion of Ukraine . (ESA/ ATG medialab)

The European Space Agency has decided that is currently impossible to continue any ongoing cooperation with the Russian space agency Roscosmos, and is moving forward with a “fast-track industrial study” to define how the mission can proceed without the Russians on its ambitious ExoMars astrobiology mission.

In a release, ESA said that “as an intergovernmental organization mandated to develop and implement space programs in full respect with European values, we deeply deplore the human casualties and tragic consequences of the aggression towards Ukraine. While recognizing the impact on scientific exploration of space, ESA is fully aligned with the sanctions imposed on Russia by its member states.”

The decision to rethink the mission without the Russians involved came as Roscosmos has also moved to break space ties with ESA by withdrawing personnel from Europe’s Spaceport in French Guiana and putting all ESA missions scheduled for launch by Russian Soyuz rockets on hold.  In all, five Soyuz launches of missions — Galileo M10, Galileo M11, Euclid, Earthcare and one other — have been cancelled.

The ESA statement said that the agency has begun looking for potential alternative launch services for those  missions, too.

ESA has 22 European member nations and has worked frequently with NASA and the Canadian Space Agency, as well as Roscosmos.

American and Russians astronauts, as well as those from Europe, Japan, Canada and elsewhere, have cooperated on the ISS now for decades. In this image from 2013 are Expedition 35 Commander Chris Hadfield (right) from Canada, then clockwise NASA astronauts Tom Marshburn and Chris Cassidy, and Russian cosmonauts Alexander Misurkin, Roman Romanenko and Pavel Vinogradov.   Can the cooperation last?  (NASA Marshall Space Flight Center)

At the same time that the European-Russian space partnership has been put on hold and possibly cancelled, the cooperation between Russia and the NASA, ESA, the Japanese Space Agency and the Canadian Space Agency has continued on the International Space Station.

There was earlier some doubt about Russian participation on the ISS after Roscosmos director general Dmitry Rogozin  threatened to pull out of the space station and allow it to fall back to Earth in an uncontrolled deorbit to protest of international sanctions on Russia for its Ukraine invasion.… Read more

A Huge Watery Reservoir May Lie Beneath the Surface of The “Grand Canyon” of Mars

The Valles Marineris in equatorial Mars and is one of the the largest canyon in the solar system.  It is surpassed in length only by the rift valleys of Earth. (NASA)

That early Mars was much wetter and warmer than it is today has been well established by numerous missions.  Water ice is visible at the poles and many fossil rivers have been found in the southern highlands of Mars.  The Curiosity rover found as well that the large crater where it landed — Gale Crater – once had a lake and in-flowing streams.

But the presence of water, or proof that water once flowed, has been missing in the equatorial latitudes  of the planet.

However, now a paper based on data from the European/Russian Trace Gas Orbiter (TGO) strongly suggests that the Candor Chasma, located near the heart of the massive canyon system called Valles Marineris, has either large deposits of a kind of permafrost water ice just below its surface or of rocks formed in water and now containing that H2O in their structure.

The article to appear in the journal Icarus says that the discovery of large amounts of hydrogen in the region speaks of this aqueous  past.

“We found a central part of Valles Marineris to be packed full of water – far more water than we expected,” Alexey Malakhov, of the Russian Space Research Institute and a co-author of the study, said in a statement.

“This is very much like Earth’s permafrost regions, where water ice permanently persists under dry soil because of the constant low temperatures.”

 

Valles Marineris, seen at an angle of 45 degrees to the surface in near-true color and with four times vertical exaggeration. The image covers an area of about 400,000 square miles. The largest portion of the canyon, which spans right across the image, is known as Melas Chasma. Candor Chasma is the connecting trough immediately to the north. The digital terrain model was created from 20 images taken by the High Resolution Stereo Camera of the Mars Express Orbiter. (ESA)

Valles Marineris is 10 times longer and 4 times deeper than our Grand Canyon.  Geologists have theorized that Valles Marineris began to open along geological faults about 3.5 billion years ago. The faulting may have been caused by the tectonic activity that accompanied the growth of the giant volcanoes in Tharsis, lying just to the west.Read more

Touching the Sun

An illustration of NASA’s Parker Solar Probe flying past the sun. The spacecraft has a carbon-carbon heat shield (carbon fibers in a carbon matrix) that can protect it from temperatures of up to 2500 F, about the melting point of steel.  (NASA’s Goddard Space Flight Center)

The Parker Solar Probe is the stuff of superlatives and marvels.

Later this week, it will pass but 5.3 million miles from the sun — much closer than Mercury or any other spacecraft  have ever come — and it will be traveling at a top speed of 101 miles per second, the fastest human-made object ever created.

It’s designed to withstand temperatures of 2,500 degrees Fahrenheit and solar radiation 475 times the intensity at Earth orbit.

And as it reaches its perihelion, or closest pass of this orbit, it will be on only its 10th of 24 planned progressively closer solar passes.  In the years ahead, it will ultimately skim into the upper corona, the atmosphere of charged and unimaginably hot plasma that surrounds the sun and other stars.  The Parker Probe will, quite literally, touch the sun.

Something rather awe-inspiring to think about this coming Sunday, when the next pass takes place.

The mission, however, surely does not have record-setting as its goal.  Rather, those records are necessary to achieve the scientific goals — to fly close enough to the sun to understand how and where the gravity-defying force of the “solar wind” originates; to determine the structure and dynamics of the magnetic fields and switchbacks that are hotly debated as a possible source of that solar wind; and to resolve the mystery of why the sun’s corona is unexpectedly hotter than the solar “surface” below it.

“Parker Solar Probe is already telling us many important things about the sun that we didn’t know,” said Nour Raouafi, Parker Solar Probe project scientist at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland.  “We are definitely getting closer to understanding some of the big questions we had before, such as the source of the solar wind.  But we have to be mindful that in whatever we find, the Sun is always changing.”

And incidently, he said, more than 99.9 percent of all the matter in our solar system is in and around the sun.

 

Solar wind activity at different scales as imaged by the Parker Probe’s Wide-field Imager (WISPR) instrument earlier this year during.
Read more

Frigid Europa Holds a Huge and Maybe Habitable Ocean Beneath Its Thick Ice Covering. How is That Possible?

Europa has one of the smoothest surface of any body in the solar system.  A moon as old as Europa that did not have an ice cover — and a likely ocean inside — would be pocked with asteroid craters.  On Europa, these craters appear to be absorbed into the icy surface via geologic and thermal processes.  Giant lakes trapped in Europa’s crust also bust up the icy surface. (NASA)

Jupiter’s moon Europa is almost five times as far away from the sun as Earth is, with surface temperatures that don’t rise above minus 260 degrees Fahrenheit.  It’s slightly smaller than our moon and orbits but 400,000 miles from the solar system’s largest planet, which it takes but 3.5 Earth days to orbit.  As a result it is tidally locked, always showing the same face to Jupiter.

When it comes to potentially habitable objects in our solar system, Europa would not seem to be a terribly likely possibility.

But, of course, it is.  And in three years NASA’s Europa Clipper mission will launch to explore what would appear to be one of the most unlikely yet possible places in our solar system to find potential signs of life.

The reason why is that scientists are almost certain that under Europa ‘s 10-to 15 mile ice covering is a deep, global ocean of salty water.

The size of the ocean has not been well determined yet, with estimates of between 40 and 100 miles of depth.  But a  consensus has been reached that the ocean is likely to be global, and contains two to three times as much liquid water as found on Earth.

This then raises a question with great significance for Europa, other moons in the solar system and quite likely planets and moons well beyond us:  How can there be so much liquid water inside such frigid places?

The spot toward the lower left is one Europa, against the backdrop of Jupiter.  Images from Voyager in 1979 bolster the modern hypothesis that Europa has an underground ocean and is therefore a good place to look for extraterrestrial life. The dark spot on the upper right is a shadow of another of Jupiter’s large moons. Sixteen frames from Voyager 1’s 1979 Jupiter flyby were recently reprocessed and merged to create this image.  (NASA, Voyager 1, JPL, Caltech; Processing & License: Alexis Tranchandon / Solaris)

There are numerous possible answers to that question, and it’s likely that all or most played some role.… Read more

Sample Return from Mars Begins in Earnest

This image taken by NASA’s Perseverance rover on Sept. 7, 2021 shows two holes where the rover’s drill obtained chalk-size samples from a rock nicknamed “Rochette.” They are the first physical manifestations of the NASA’s long-planned Mars Sample Return Mission. (NASA/JPL-Caltech.)

For the first time ever, a sample of pulverized rock from another planet has been drilled, collected and stored for eventual delivery to the highest-tech labs on Earth.

Yes, a storehouse of rocks were collected on the moon by Apollo astronauts and delivered to Houston, and some small samples of two asteroids and one comet were snatched by three spacecraft (two Japanese and one American) and their contents were brought here for study.

But never before has the surface of another planet been the source of precious extraterrestrial material that some day, if all goes well, will be received on Earth for intensive analysis.

The feat was accomplished by the team that operates the Perseverance rover on Mars.  After an unsuccessful effort to drill what turned out to be a very soft rock in August , the rover drill succeeded in digging into a briefcase-sized hard volcanic rock twice this month and pulling out samples to be tubed and stored for later pick-up by a different mission.

That next step isn’t scheduled for another half decade and the samples would not arrived on Earth until well after that.  But a long-dreamed and highly-ambitious effort to bring some of Mars to Earth (called Mars Sample Return) has now formally begun.

“This is a truly historic achievement, the very first rock cores collected on another terrestrial planet — it’s amazing,” Meenakshi Wadhwa, Mars sample return principal scientist at NASA’s Jet Propulsion Laboratory, said during a news conference held Friday

“In our science community, we’ve talked about Mars sample return for decades,” Wadhwa said. “And now it’s actually starting to feel real.”

Perseverance’s first cored-rock sample of Mars is seen inside its titanium container tube in this image taken by the rover’s Sampling and Caching System Camera, known as CacheCam. (NASA/JPL-Caltech)

The press conference was a victory lap of sorts for leaders of a team with many members who have worked eight to ten years for this moment.  Lori Glaze, NASA’s director of the Planetary Science Division, also called it an historic achievement –the culmination of advances pioneered by many other NASA missions to Mars and elsewhere and a milestone for NASA’s Mars program.… Read more

And Then There Were Three: ESA Follows NASA in Selecting a Mission to Venus

Artist illustration of the EnVision orbiter at Venus (ESA/VR2Planets/DamiaBouic)

It was quite a week for Venus scientists. Just seven days after NASA announced the selection of two Venus missions, DAVINCI+ and VERITAS, the European Space Agency (ESA) revealed that a third Venus mission had been chosen for the agency’s medium-class mission category.

(See last week’s post here on Many Worlds about DAVINCI+ and VERITAS)

The new mission is named EnVision, and will be ESA’s second Venus mission following Venus Express (2005 – 2014), which investigated the Venusian climate. While EnVision is an orbiter like Venus Express and VERITAS, its focus is the planet’s geological circulation system that links the atmosphere, surface and interior.

In case you are starting to get your Venus missions in a tangle, the set can be broadly divided up as follows:

Venus Express (ESA: 2005 – 2014) and Akatsuki (JAXA: 2015 – current) are both Venus orbiters focussed on the planet’s climate, returning information about the rapidly rotating upper atmosphere and acidic cloud deck of Venus.

DAVINCI+ (NASA: est. 2029 launch) is an orbiter and descending probe that will dive through the Venusian atmosphere to return top-to-bottom data on the planet’s stifling gases.

VERITAS (NASA: est. 2028 launch) is an orbiter focussed on Venus’s surface and the deep interior. VERITAS will bring us global maps in three-dimensions at a resolution of 30m. This will knock the socks off our current images from NASA’s Magellan orbiter (1989 – 1994), which had a resolution of around 200m.

EnVision (ESA: early 2030s) is the mission focused on how these environments are linked together. Equipped with an instrument suite that covers the top of the atmosphere through to below the planet surface, EnVision will probe how the different regions influence one another to create the planet’s internal systems.

“EnVision has a holistic approach,” explained Jörn Helbert who is a member of the EnVision team. “The larger and more complex payload studies Venus from the top of the atmosphere all the way to the subsurface, with a focus on understanding how the coupled system on Venus works.”

Artist illustration of the EnVision spacecraft, reflecting the goal of understanding why Venus and Earth are so different (NASA / JAXA / ISAS / DARTS / Damia Bouic / VR2Planets).

The coupled system is at the heart of how habitability can develop on rocky planets. A major player in the Earth’s environment is the ability to cycle carbon between the atmosphere, surface and planet mantle.… Read more

The Hows and Whys of Mars Sample Return

Combining two images, this mosaic shows a close-up view of the rock target named “Yeehgo” taken by the SuperCam instrument on NASA’s Perseverance rover on Mars. To be compatible with the rover’s software, “Yeehgo” is an alternative spelling of “Yéigo,” the Navajo word for diligent.
(NASA/JPL-Caltech/LANL/CNES/CNRS/ASU/MSSS)

One of the fondest dreams and top priorities of space science for years has been  to bring a piece of Mars back to Earth to study in the kind of depth possible only in a cutting-edge laboratory.

While the instruments on Mars rovers can tell us a lot,  returning a sample to study here on Earth is seen as the  way to ultimately tease out the deepest secrets of the composition of Mars, its geological and geochemical history and possibly the presence of life, life fossils or of the precursor molecules  of life.

But bringing such a sample to Earth is extraordinarily difficult.  Unlike solar system bodies that have been sampled back on Earth — the moon, a comet and some asteroids — Mars has the remains of an atmosphere.  That means any samples would have to lift off in a rocket brought to Mars and with some significant propulsive power, a task that so far has been a technical bridge too far.

That is changing now and the Mars Sample Return mission has begun.  The landing of the Perseverance rover in Jezero Crater on Mars signaled that commencement and the rover will be used to identify, drill into and collect intriguing bits of Mars.  This is a long-term project, with the best case scenario seeing those Mars samples arriving on Earth in a decade.  So this entirely unprecedented, high-stakes campaign will be playing out for a long time.

“I think that Mars scientists would like to return as much sample as possible,” said Lindsay Hays, NASA Mars Sample Return deputy program scientist.  “Being able to return samples that we collected with purpose is how we take the next step in our exploration of Mars.”

“And it seems that there are still so many unknowns, even in our solar system, even with the planets right next door, that every time we do something new, we answer a couple of questions that we hoped to and but also find a whole bunch of new things that we never expected.”

“I am so excited to see what comes of this adventure.  And I think that is a feeling shared by Mars scientists and planetary scientists broadly.”… Read more

NASA’s Perseverance Rover Lands on Mars — The Third Martian Arrival in a Week

This true-color Mars globe includes Terra Meridiani, the region where NASA’s Opportunity rover explored from 2004 to 2018.  Two more Mars rovers — one from NASA and the other from China — are scheduled to land this week and then later in the year. (NASA/Greg Shirah)

Mars is receiving visitors these days.  Quite a few of them.

The most prominent visitor is NASA’s Perseverance rover,  which made a difficult but smooth precision landing at 3.55 ET  this afternoon.

The rover now sits in Jezero Crater, in an area that clearly once had lots of water flowing.   The site was selected, in part, because the Perseverance rover’s official mission includes — for the first time since the mid 1970s — an effort to find signs of long ago life.

Perseverance will join the Curiosity rover on Mars, that pioneering machine that has revolutionized our understanding of the planet since it landed in 2012  The Curiosity and Perseverance rovers are similar in design but carry different instruments with different goals.

A key difference:  Curiosity was tasked with determining whether Mars had once been habitable and found that it definitely had been, with flowing rivers, large lakes and necessary-for-life organic compounds.  Perseverance will take another scientific step forward and search for signs that Mars actually was once inhabited.

Perseverance also joins China’s Tianwen-1 (“heavenly questions”) probe,  which went into orbit around Mars last week.  It is the first Chinese spacecraft to arrive at Mars, and later this spring or summer the Chinese space agency will attempt to land a rover as well on the planet’s northern plains..

And then there’s the Hope spacecraft which entered into Mars orbit last week as well.  Launched by the United Arab Emirates, it was placed in a wide orbit so it could study the planet’s weather and climate systems, which means it also can see the full planet in one view.

These spacecraft will join several others on or orbiting Mars, making this by far the busiest time ever for exploration of Mars — a real milestone.

NASA’s Perseverance rover will land in Jezero Crater. This image was produced using instruments on NASA’s Mars Reconnaissance Orbiter, which helps identify potential landing sites for future missions. On ancient Mars, water carved channels and transported sediments to form fans and deltas within lake basins, as is clearly visible at here at Jezaro Crater (NASA/JPL-Caltech/ASU)

That the Perseverance mission has a formal goal of searching for ancient signs of life is a big deal, and involves a lot of history.… Read more

Our Sun, as Never Seen Before

This animation shows a series of views of the sun captured with the Extreme Ultraviolet Imager (EUI) on ESA/NASA’s Solar Orbiter on May 30, 2020. They show the sun’s appearance at a wavelength of 17 nanometers, which is in the extreme ultraviolet region of the electromagnetic spectrum. Images at this wavelength reveal the upper atmosphere of the sun and the corona, which has a temperature of more than a million degrees. Solar Orbiter/EUI Team (ESA & NASA; CSL, IAS, MPS, PMOD/WRC, ROB, UCL/MSSL)

The first images of the sun from the European Space Agency/NASA’s Solar Orbiter have been released and are stupendous.  They are the closest photos ever taken of the star that we orbit, and have already revealed some fascinating features that nobody knew existed.

Launched early this year, the spacecraft completed its first close pass of the sun in mid-June and began sending back images and data.

“These amazing images will help scientists piece together the sun’s atmospheric layers, which is important for understanding how it drives space weather near the Earth and throughout the solar system.” aid Holly Gilbert, NASA project scientist for the mission at NASA’s Goddard Space Flight Center.

The orbiter has already found previously unknown found across the sun miniature versions of the gigantic solar flares that reach out far into space.  But these much smaller versions,  deemed to be “campfires,” are so far seen by not understood.

Normally, the first images from a spacecraft confirm the instruments are working; scientists don’t expect new discoveries from them. But the Extreme Ultraviolet Imager, or EUI, on Solar Orbiter returned data hinting at solar features never observed in such detail.

“The campfires we are talking about here are the little nephews of solar flares, at least a million, perhaps a billion times smaller,” said mission principal investigator David Berghmans an astrophysicist at the Royal Observatory of Belgium said.

“When looking at the new high resolution EUI images, they are literally everywhere we look.”

Solar Orbiter spots ‘campfires’ on the Sun. Locations of campfires are annotated with white arrows.
Solar Orbiter/EUI Team (ESA & NASA; CSL, IAS, MPS, PMOD/WRC, ROB, UCL/MSSL)

That the Solar Orbiter has been able to continue on its mission has been no simple feat.

The coronavirus forced mission control at the European Space Operations Center (ESOC) in Darmstadt, Germany to close down completely for more than a week. During commissioning, the period when each instrument is extensively tested, ESOC staff were reduced to a skeleton crew.… Read more

« Older posts

© 2023 Many Worlds

Theme by Anders NorenUp ↑