Tag: eccentric orbit

Weird Planets

 

 

Artist rendering of an “eyeball world,” where one side of a tidally locked planet is always hot on the sun-facing side and the back side is frozen cold.  Definitely a tough environment, but  might some of the the planets be habitable at the edges?  Or might winds carry sufficient heat from the front to the back?  (NASA/JPL-Caltech)

The very first planet detected outside our solar system powerfully made clear that our prior understanding of what planets and solar systems could be like was sorely mistaken.

51 Pegasi was a Jupiter-like massive gas planet, but it was burning hot rather than freezing cold because it orbited close to its host star — circling in 4.23 days.  Given the understandings of the time, its existence was essentially impossible. 

Yet there it was, introducing us to what would become a large and growing menagerie of weird planets.

Hot Jupiters, water worlds, Tatooine planets orbiting binary stars, diamond worlds (later downgraded to carbon worlds), seven-planet solar systems with planets that all orbit closer than Mercury orbits our sun.  And this is really only a brief peak at what’s out there — almost 4,000 exoplanets confirmed but billions upon billions more to find and hopefully characterize.

I thought it might be useful — and fun — to take a look at some of the unusual planets found to learn what they tell us about planet formation, solar systems and the cosmos.

 


Artist’s conception of a hot Jupiter, CoRoT-2a. The first planet discovered beyond our solar system was a hot Jupiter similar to this, and this surprised astronomers and led to the view that many hot Jupiters may exist. That hypothesis has been revised as the Kepler Space Telescope found very few distant hot Jupiters and now astronomers estimate that only about 1 percent of planets are hot Jupiters. (NASA/Ames/JPL-Caltech)

 

Let’s start with the seven Trappist-1 planets.  The first three were detected two decades ago, circling a”ultra-cool” red dwarf star a close-by 40 light years away.  Observations via the Hubble Space Telescope led astronomers conclude that two of the planets did not have hydrogen-helium envelopes around them, which means the probability increased that the planets are rocky (rather than gaseous) and could potentially hold water on their surfaces.

Then in 2016 a Belgian team, using  the Transiting Planets and Planetesimals Small Telescope (TRAPPIST) in Chile, found three more planets, and the solar system got named Trappist-1. Read more

How Planet 9 Would Make Ours a More Typical Solar System

 

The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. The new report shows a planet with 10 times the mass of the earth in a distant eccentric orbit anti-aligned with the other six objects (orange) is required to maintain this configuration. Image: Caltech/R. Hurt (IPAC)"

The six most distant known objects in our solar system with orbits (magenta) exclusively beyond Neptune all mysteriously line up in a single direction. A new report identifies the potential presence of a distant solar system planet — with 10 times the mass of the Earth and in a distant and eccentric orbit (orange) — as the reason why.  (JPL/Caltech; R. Hurt)

There’s been a ton of justifiable excitement these days about the possible discovery of a ninth planet in our solar system — an object ten time the mass  of Earth and 200 times further from the sun.  Especially in the context of the recent demotion of Pluto from a planet to a dwarf planet, the announcement of a potential replacement seems almost karmic, stage managed, in its take-and-give.  This is especially so since the astronomer probably most responsible for the diminished position of Pluto is also the one who now asserts the very far away presence of a different Planet 9 — planetary astronomer Michael Brown of the California Institute of Technology.

The validity of the possible detection of a Planet 9 has set off hot debates — with NASA officials, for instance, making clear that the agency sees the “discovery” as an exciting but early step towards establishing the existence of possible new planet.  We are all drawn to discovery and controversy, so the presence, or non-presence, of the planet has been the focus of attention.

But another most intriguing aspect of the finding has been largely ignored — the way  that such a Planet 9 would make our solar system surprisingly more similar to the many more eccentric exoplanet solar systems now known to be out there.  Our solar system would also suddenly have a range of planets sized more like the galactic norm.

What’s more, there’s reason to consider that a Planet 9 could have been spun off another solar system rather than having been ejected from the inner solar system, as proposed by Brown and colleague Konstantin Batygin.

In other words, Planet 9 may be an “exoplanet” in origin.  And if not, a finding that it was ejected long ago from our inner solar system would answer some questions about why our system seems to be so different from many of the other exoplanetary systems discovered so far.

Mike Brown and Konstanytin Batyglin of Caltech

Astronomers Mike Brown and Konstantin Batygin of Caltech.  They took research by Scott Shepard of the Carnegie Institution for  Science and Chad Trujillo of the Gemini Observatory in Hawaii regarding the unusual paths of objects orbiting beyond Pluto and carried it further to conclude there is a Planet 9 in the distant solar neighborhood. 

Read more

© 2019 Many Worlds

Theme by Anders NorenUp ↑