Tag: Earth

How Planetary Orbits, in Our Solar System and Beyond, Can Affect Habitability

Varying degrees of orbital eccentricity around a central star. (NASA/JPL-Caltech)

As scientists work to understand what might make a distant planet habitable, one factor that is getting attention is the shape of the planet’s orbit, how “eccentric” it might be.

It might seem that a perfect circular orbit would be ideal for habitability because it would provide stability, but a new model suggests that it is not necessarily the case.  The planet in question is our own and what the model shows is that if Jupiter’s orbit were to change in certain ways, our planet might become more fertile than it is.

The logic play out as follows:

When a planet has a perfectly circular orbit around its star, the distance between the star and the planet never changes and neither does the in-coming heat. But most planets — including our own — have eccentric orbits around their stars, making the orbits oval-shaped. When the planet gets closer to its star it receives more heat, affecting the climate.

Using multi-factored models based on data from the solar system as it is known today, University of California, Riverside (UCR) researchers created an alternative solar system. In this theoretical system, they found that if Jupiter’s orbit were to become more eccentric, it would in turn produce big changes in the shape of Earth’s orbit.  Potentially for the better.

“If Jupiter’s position remained the same but the shape of its orbit changed, it could actually increase this planet’s habitability,” said Pam Vervoort, UCR Earth and planetary scientist and study lead author.

The paper upends two long-held scientific assumptions about our solar system, she said.

“Many are convinced that Earth is the epitome of a habitable planet and that any change in Jupiter’s orbit, being the massive planet it is, could only be bad for Earth,” Vervoort said in a release. “We show that both assumptions are wrong.”

Size comparison of Jupiter and Earth shows why any changes relating to the giant planet would have ripple effects. (NASA)

 

As she and colleagues report in the Astronomical Journal, if Jupiter pushed Earth’s orbit to become more eccentric based on its new gravitational pull, parts of the Earth would sometimes get closer to the sun.  As a results, parts of the Earth’s surface that are now sub-freezing would get warmer, increasing temperatures in the habitable range.

While the Earth-Jupiter connection is a focus of the paper and forms a relationship that’s not hard to understand, the thrust of the paper is modeling how similar kinds of exoplanet orbits and solar system relationships can affect habitability and the potential for life to emerge and prosper.… Read more

Earth as a Transiting Exoplanet

A view of Earth and Sun from thousands of miles above our planet. Stars that enter and exit a position where they can see Earth as a transiting planet around our Sun are brightened. (OpenSpace/American Museum of Natural History)

Exoplanet scientists and enthusiasts spend a lot of time trying to find, measure and understand distant planets that can — under specific conditions — be detected as passing in front of their host star.  A majority of the 4000-plus exoplanets discovered so far were indirectly detected this way, by measuring the diminishing of stellar light as the exoplanet passes between the star and us.

In a conceptual turnaround, two researchers have now asked the question of how common it might be for beings on distant exoplanets to be able to similarly detect and measure Earth as it transits in front of our sun.

Astronomers call this special vantage point in space – the point from which Earth transits can be seen – the Earth transit zone.  Because the cosmos is dynamic and ever-changing, they looked for not only stars that are in that zone now, but have also passed through over the past 5,000 years and will in the next 5,000 years.

“From the exoplanets’ point-of-view, we are the aliens,” said Lisa Kaltenegger, director of the Carl Sagan Institute at Cornell University.

“We wanted to know which stars have the right vantage point to see Earth, as it blocks the sun’s light.  And because stars move in our dynamic cosmos, this vantage point is gained and lost.”


Transit data are rich with information. By measuring the depth of the dip in brightness and knowing the size of the star, scientists can determine the size or radius of the planet. The orbital period of the planet can be determined by measuring the elapsed time between transits. Once the orbital period is known, Kepler’s Third Law of Planetary Motion can be applied to determine the average distance of the planet from its stars. (NASA/Ames)

How many stars (and their orbiting planets) have this proper vantage point, have had in the past and will in the future?

In Kaltenegger’s paper, published in Nature with Jackie Faherty of the astrophysics department of the American Museum of Natural History, the numbers reported are quite low.

They found that since the earliest human civilization about 5,000 years ago, only 1,715 stars among the 300,000-plus that shine within 300 light years of our sun are in the right geometric alignment for an observation of Earth passing in front of our sun. Read more

An “Elegant” New Theory on How Earth Became a Wet Planet

About 71 percent of the Earth’s surface is covered by water, and vast quantities of water are also locked up in minerals on and beneath the surface.  This image of Earth comes from NASA’s Earth Polychromatic Imaging Camera (EPIC) on NOAA’s Deep Space Climate Observatory (DSCOVR), orbits Earth from a distance of about 1 million miles away. (NASA)

One of the enduring puzzles of our planet is why it is so wet.

Since Earth formed relatively close to the sun,  planetary scientists have generally held that any of the water in the building blocks of early-forming Earth was baked out and so was unavailable to make oceans or our atmosphere.

That led to theories explaining the oceans and wet atmosphere of Earth as a later addition, brought to us by meteorites and comets formed beyond the solar system’s so-called “snow line,” where volatile compounds such as water can begin to condense into ice.

This snow line is a general area between Mars and Jupiter, and that means under this theory that our water would have had to come from awfully far away.   Further complicating this view is that the isotopic makeup of that distant water ice is somewhat different from much of the water on Earth.

Now, a new paper in the journal Science from Laurette Piani of  the Université de Lorraine and colleagues, argues that Earth’s water was simply acquired like most other of our materials, through accretion when the planet formed in the inner solar nebula.

To reach that conclusion, the group re-examined 13 meteorites of the parched type formed between Earth and the sun, and they found more than of enough hydrogen present to explain how Earth got so wet (wet for our solar system, that is.)

In fact, they extrapolated from their data that enough water was available in the nebular cloud  that accompanied the formation of our sun and formed those early meteorites — called enstatite chondrites — to create three times as much water as our oceans hold.

 

 

New measurements of enstatite chondrites indicate that water could have been primarily acquired from Earth’s building blocks. Additional water was delivered to Earth’s early oceans and atmosphere by water-rich material from comets and the outer asteroid belt. (Science)

“Our discovery shows that the Earth’s building blocks might have significantly contributed to the Earth’s water and that hydrogen bearing material was present in the inner solar system at the time of the Earth and rocky planet formation, even though the temperatures were too high for water to condense,'” Piani told me.… Read more

On Super-Earths, Sub-Neptunes and Some Lessons They Teach

Part 2 of 2

The Kepler-452 system compared alongside the Kepler-186 system and our solar system. Kepler-186 is a miniature solar system that would fit entirely inside the orbit of Mercury. The size of the habitable zone of star Kepler-452, considered one of the most “Earth-like” exoplanets found so far, is nearly the same as that of our sun. “Super-Earth” Kepler-452b orbits its star once every 385 days. (NASA Ames/JPL-CalTech/R. Hurt)

The Kepler-452 system compared alongside the Kepler-186 system and our solar system. Kepler-186 is a miniature solar system that would fit entirely inside the orbit of Mercury. The size of the habitable zone of star Kepler-452, considered one of the most “Earth-like” exoplanets found so far, is nearly the same as that of our sun. “Super-Earth” Kepler-452b orbits its star once every 385 days. (NASA Ames/JPL-CalTech/R. Hurt)

 

With such a large proportion of identified exoplanets in the super-Earth to sub-Neptune class, an inescapable question arises: how conducive might they be to the origin and maintenance of life?

So little is actually know about the characteristics of these planets that are larger than Earth but smaller than Neptune (which has a radius four times greater than our planet) that few are willing to offer a strong opinion.

Nonetheless, there are some seemingly good reasons to be optimistic, about the smaller super-Earths in particular. And there are some seemingly good reasons to be pessimistic –many appear to be covered in a thick layer of hydrogen and helium gas, with a layer of sooty smog on top, and that does not sound like an hospitable environment at all.

But if twenty years of exoplanet hunting has produced any undeniable truth, it is that surprising discoveries are a constant and overturned theories the norm. As described in Tuesday’s post, it was only several years ago that results from the Kepler Space Telescope alerted scientists to the widespread presence of these super-Earths and sub-Neptunes, so the fluidity of the field is hardly surprising.

One well-respected researcher who is bullish on super-Earth biology is Harvard University astronomy professor Dimitar Sasselov. He argues that the logic of physics tells us that the “sweet spot” for planetary habitability is planets from the size of Earth to those perhaps as large as 1.4 Earth radii. Earth, he says, is actually small for a planet with life, and planets with a 1.2 Earth radii would probably be ideal.

I will return to his intriguing analysis, but first will catalog a bit of what scientists have detected or observed so far about super-Earths and sub-Neptunes. As a reminder, here’s the chart of Kepler exoplanet candidate and confirmed planets that orbit G, K and M main sequence stars put together by Mission Scientist for the Kepler Space Telescope Kepler Natalie Batalha.

Unknown

Kepler exoplanets candidates, both confirmed and unconfirmed, orbiting G, K, and M type main sequence stars, by radii and fraction of the total.

Read more

© 2023 Many Worlds

Theme by Anders NorenUp ↑