Tag: CubeSat

For First Time, Tiny CubeSat Locates a Distant Exoplanet

 

The image above, courtesy of NASA’s Jet Propulsion Laboratory, shows the CubeSat ASTERIA as it was being launched from the International Space Station in 2017.

The size of a briefcase, ASTERIA is part of a growing armada of tiny spacecraft being launched around the world and adding an increasingly important (and inexpensive) set of new tools for conducting Earth, space and exoplanet science.

ASTERIA, for instance, was designed to perform some of the complex tasks much larger space observatories use to study distant exoplanets outside our solar system.   And a new paper soon to be published in the Astronomical Journal describes how ASTERIA (short for Arcsecond Space Telescope Enabling Research in Astrophysics) didn’t just demonstrate it could perform those tasks but went above and beyond, detecting the known exoplanet 55 Cancri e.

While it was not the first detection of that exoplanet — which orbits close to its host star 41 light years away — it was the first time that a CubeSat had measured the presence of an exoplanet, something done so far only by much more sophisticated space and ground telescopes.

“Detecting this exoplanet is exciting because it shows how these new technologies come together in a real application,” said Vanessa Bailey, who led the ASTERIA  exoplanet science team at JPL.  The project was a collaboration between JPL and the Massachusetts Institute of Technology.

“We went after a hard target with a small telescope that was not even optimized to make science detections – and we got it, even if just barely,” said Mary Knapp, the ASTERIA project scientist at MIT’s Haystack Observatory and lead author of the study. “I think this paper validates the concept that motivated the ASTERIA mission: that small spacecraft can contribute something to astrophysics and astronomy.”  Both made their comments in a JPL release.

 

Artist rendering of planet Cancri 55 e. (NASA; JPL/Caltech)

 

ASTERIA was originally designed to spend 90 days in space.  But it received three mission extensions before the team lost contact with the satellite in late 2019.

The mission was not even designed to look for exoplanets.  It was, rather, a technology demonstration, with the mission’s goal to develop new capabilities for future missions. The team’s technological leap was to build a small spacecraft that could conduct fine pointing control — essentially the ability to stay focused very steadily on a distant star for long periods.… Read more

MarCO And The Future of CubeSats

 

MarCO-B, one of the experimental Mars Cube One (MarCO) CubeSats, took this image of Mars from about 4,700 miles away during its flyby last November. MarCO-B had been sent to Mars with its twin, MarCO-A, to serve as communications relays for NASA’s InSight spacecraft as it landed. The image includes a portion of the CubeSat’s high-gain, X-band antenna on the right. (NASA/JPL-Caltech)

 

CubeSats are the anti-big ticket space missions.

They come as small as 4 inches squared and in units that size weigh about 3 pounds.  They currently carry cameras, high gain antennas, radios and other scientific equipment, and because of their weight and size they can easily hitch a ride on a rocket sending a traditional large payload into orbit.

More than 900 CubeSats have been launched since they began in being deployed early this century, but only two have left low-Earth orbit. 

Those two went to Mars last year along with the InSight lander (a deep geology mission) and despite some short-term but nerve-racking radio silence just before they were needed, they performed exactly as planned.

In the process they both heightened the profile and the desirability of CubeSats as a growing addition to space science and commerce. 

 

A rendering of MarCO on its way to Mars, with solar panel and flat-panel antenna unfurled.  The core of the nanosatellite is about the size of a briefcase. (NASA-JPL)

 

Called Mars Cube One or MarCO, the two that accompanied InSight were both a technological demonstration and an important operational component — serving as the communication link between the spacecraft and Earth for seven crucial minutes during InSight’s descent.

“We exceeded expectations,” said MarCO chief engineer Andrew Klesh of NASA’s Jet Propulsion Lab, speaking during a NASA Future In-Space Operations (FISO) webinar. 

“Getting into deep space like we did shows that this is only the beginning for CubeSat missions to explore the solar system.   They are a real addition to communications and they provide a new way to conduct science along the way.”

While they were launched on the rocket that sent InSight to Mars, they detached soon after liftoff and flew on their own power to the scheduled meeting place on Mars.

The MarCO CubeSats maintained contact with Earth for almost all of the 6 month journey to Mars and then performed as planned during the InSight descent and landing,  they lost touch with Earth only weeks after. Read more

© 2023 Many Worlds

Theme by Anders NorenUp ↑