
On September 14 at 3pm GMT, an embargo lifted on a research paper reporting evidence for biological activity on Venus. Speculation about the discovery had been spreading rapidly through social media for several days, proving that scientists are incapable of keeping secrets.
With a surface temperature sufficient to melt lead, Venus is not the usual candidate for extraterrestrial life. However, the reported signature resides not on the surface of the planet, but in its clouds.
Led by Professor Jane Greaves at Cardiff University, the research team report an observation of phosphine; a molecule consisting of one atom of phosphorous and three atoms of hydrogen (PH3). On Earth, the trace amounts of phosphine in the atmosphere all come from either human or microbial activity. But does that make the presence of phosphine irrefutable evidence of life on Venus?
The case for phosphine as a biosignature
Phosphine has been found in the atmospheres of the gas giant planets, Jupiter and Saturn. However, this phosphine forms at the high temperatures and pressures existing deep within the giants’ colossal hydrogen-rich atmospheres. This process is not possible on the terrestrial planets, where the atmospheres are vastly thinner and hydrogen poor.
Instead of hydrogen, Venus’s atmosphere consists predominantly of carbon dioxide with clouds of sulfuric acid. While both ingredients sound abysmal for the prospect of life, the molecules consist of carbon and sulfur bounded to oxygen atoms. The prevalence of oxygen atoms should have resulted in any phosphorous present in the atmosphere to chemically react in a similar fashion to form a phosphate molecule (phosphorous and oxygen), rather than the observed phosphine (phosphorus and hydrogen).

Despite considering thousands of possible reactions that might occur within Venus’s atmosphere, Greaves and her team failed to simulate the production of phosphine on Venus through abiotic (non-biological) means. Energetic processes such as lightening, volcanic activity or delivery via meteorites were also ruled out as possible sources, as the quantities they produced should be too low to explain the detection.
Estimates for the lifetime of phosphine also remove the chance that the molecules are leftover from an earlier epoch when the young Venus hosted a more clement environment.… Read more