Tag: akatsuki

And Then There Were Three: ESA Follows NASA in Selecting a Mission to Venus

Artist illustration of the EnVision orbiter at Venus (ESA/VR2Planets/DamiaBouic)

It was quite a week for Venus scientists. Just seven days after NASA announced the selection of two Venus missions, DAVINCI+ and VERITAS, the European Space Agency (ESA) revealed that a third Venus mission had been chosen for the agency’s medium-class mission category.

(See last week’s post here on Many Worlds about DAVINCI+ and VERITAS)

The new mission is named EnVision, and will be ESA’s second Venus mission following Venus Express (2005 – 2014), which investigated the Venusian climate. While EnVision is an orbiter like Venus Express and VERITAS, its focus is the planet’s geological circulation system that links the atmosphere, surface and interior.

In case you are starting to get your Venus missions in a tangle, the set can be broadly divided up as follows:

Venus Express (ESA: 2005 – 2014) and Akatsuki (JAXA: 2015 – current) are both Venus orbiters focussed on the planet’s climate, returning information about the rapidly rotating upper atmosphere and acidic cloud deck of Venus.

DAVINCI+ (NASA: est. 2029 launch) is an orbiter and descending probe that will dive through the Venusian atmosphere to return top-to-bottom data on the planet’s stifling gases.

VERITAS (NASA: est. 2028 launch) is an orbiter focussed on Venus’s surface and the deep interior. VERITAS will bring us global maps in three-dimensions at a resolution of 30m. This will knock the socks off our current images from NASA’s Magellan orbiter (1989 – 1994), which had a resolution of around 200m.

EnVision (ESA: early 2030s) is the mission focused on how these environments are linked together. Equipped with an instrument suite that covers the top of the atmosphere through to below the planet surface, EnVision will probe how the different regions influence one another to create the planet’s internal systems.

“EnVision has a holistic approach,” explained Jörn Helbert who is a member of the EnVision team. “The larger and more complex payload studies Venus from the top of the atmosphere all the way to the subsurface, with a focus on understanding how the coupled system on Venus works.”

Artist illustration of the EnVision spacecraft, reflecting the goal of understanding why Venus and Earth are so different (NASA / JAXA / ISAS / DARTS / Damia Bouic / VR2Planets).

The coupled system is at the heart of how habitability can develop on rocky planets. A major player in the Earth’s environment is the ability to cycle carbon between the atmosphere, surface and planet mantle.… Read more

Return to Hell: NASA Selects Two Missions to Venus to Explore the Pathway to Habitability

Artists’ renderings show the VERITAS spacecraft (left) and DAVINCI+ probe (right) as they arrive at Venus (Lockheed Martin).

For NASA scientists, Venus missions must feel like buses. You wait thirty years for one, and then two come along at once.

Last week, NASA selected two Venus missions for the space agency’s Discovery Program; solar system exploration missions that can tuck under a lower cost cap than candidates for NASA’s New Horizons or Flagship categories. The first of these is DAVINCI+, which is an orbiter equipped with a descending probe that will take a big whiff of Venus’s stifling atmosphere. The second is the VERITAS orbiter that plans to peer through the clouds to scrutinise the Venusian surface.

While Europe and Japan have both visited Venus more recently than NASA (in fact, the Japanese orbiter is still there), there is little doubt that our inner neighbor is dramatically under-explored compared to Mars. But why the past neglect, and why go twice now?

The answer to the first question is perhaps the easiest.

Venus is hell.

The planet is wrapped in a thick atmosphere consisting of carbon dioxide and clouds of sulfuric acid that beat down on the Venusian surface with pressures nearly one hundred times higher than on Earth and create temperatures sufficient to melt lead.

These conditions have made it difficult to follow the usual pattern of planetary exploration from fly-bys and orbiters to landers and rovers. The Venusian surface is so inhospitable that a rover like NASA’s Mars Perseverance would become rover goop. Although recent engineering combined with high-temperature electronics means that the surface is no longer impossible, it does greatly add to the challenge (and therefore cost) of a lander mission.

Professor Stephen Kane, University of California, Riverside.

Hell-scape conditions have also resulted in Venus being overlooked for any astrobiological studies compared to (the still rather nasty but at least you can stand a rover on the surface) Mars. This makes the urgency to explore Venus now particularly surprising. The missions are a quest to understand habitability. The bottom line is that the hell world of Venus is essential to understanding how a planet becomes habitable and to discovering other habitable worlds outside our solar system.

“Imagine you live in a small town full of life,” explains Professor Stephen Kane from the DAVINCI+ team. “The nearest town is the same size and seems it was once identical. But now, it’s burned to the ground with no sign of life.… Read more

To Understand Habitability, We Need to Return to Venus


This image shows the night side of Venus in thermal infrared. It is a false-color image using data from the Japanese spacecraft Akatsuki’s IR2 camera in two wavelengths, 1.74 and 2.26 microns. Darker regions denote thicker clouds, but changes in color can also denote differences in cloud particle size or composition from place to place.  JAXA / ISAS / DARTS / Damia Bouic

“You can feel what it’s like on Venus here on Earth,” said Kevin McGouldrick from the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder. “Heat a hot plate until it glows red, place your palm on its surface and then run over that hand with a truck.”

The surface of Venus is a hellish place. Suffocated by a thick atmosphere, pressure on the Venusian surface is 92 times greater than on the surface of Earth. Temperatures sit at a staggering 863°F (462°C), which is sufficient to melt lead.

The longest a spacecraft has survived in these conditions is a mere 127 minutes; a record set by the Russian Venera 13 mission over 35 years ago.

As the brightest planet in the night sky, Venus allured ancient astronomers into naming the world after the Roman mythological goddess of love and beauty. This now seems an ironic choice, but the contrast between distant observation and surface conditions produces an apt juxtaposition for exoplanets.

The comparison has led to an article in Nature Geoscience by McGouldrick and a nine author white paper advising on astrobiology strategy for the National Science Foundation. The conclusion of both publications echoes the irony of Venus’s name: we need to return to the inferno of Venus to understand habitable worlds.

A portion of western Eistla Regio is displayed in this three-dimensional perspective view of the surface of Venus. Synthetic aperture radar data from the spacecraft Magellan is combined with radar altimetry to develop a three-dimensional map of the surface. Rays cast in a computer intersect the surface to create a three-dimensional perspective view.  The simulated hues are based on color images recorded by the Soviet Venera 13 and 14 spacecraft. The image, a frame from a video released in 1991, was produced at NASA’s JPL Multimission Image Processing Laboratory.

In the last 25 years, scientists have discovered over 3,500 extrasolar planets. The vast majority of these worlds have not been imaged directly, but are detected by tiny influences on their host star.… Read more

© 2021 Many Worlds

Theme by Anders NorenUp ↑