Category: Uncategorized (page 1 of 3)

Cores, Planets and The Mission to Psyche

The asteroid Psyche will be the first metal-rich celestial body to be visited by a spacecraft.  The NASA mission launches in 2022 and is expected to arrive at the asteroid in late 2026.  A central question to be answered is whether Psyche is the exposed  core of a protoplanet that was stripped of its rocky mantle. (NASA)

Deep inside the rocky planets of our solar system, as well as some solar system moons,  is an iron-based core.

Some, such as Earth’s core,  have an inner solid phase and outer molten phase, but the solar system cores studied so far are of significantly varied sizes and contain a pretty wide variety of elements alongside the iron.  Mercury, for instance, is 85 percent core by volume and made up largely of iron, while our moon’s core is thought to be 20 percent of its volume and is mostly iron with some sulfur and nickel.

Iron cores like our own play a central role in creating a magnetic field around the planet, which in turn holds in the atmosphere and may well be essential to make a planet habitable.  They are also key to understanding how planets form after a star is forged and remaining dense gases and dust are kicked out to form a protoplanetary disk, where planets are assembled.

So cores are central to planetary science, and yet they are obviously hard to study.  The Earth’s core starts about 1,800 miles below the surface, and the cores of gas giants such as Jupiter are much further inward, and even their elemental makeups are not fully understood.

All this helps explains why the upcoming NASA mission to the asteroid Psyche is being eagerly anticipated, especially by scientists who focus on planetary formation.

Scheduled to launch in 2022, the spacecraft will travel to the main asteroid belt between Mars and Jupiter and home in on what has been described as an unusual “metal body,”  which is also one of the largest asteroids orbiting the sun.

While some uncertainty remains,  it appears that Psyche is the  exposed nickel-iron core of a long-ago emerging rocky protoplanet, with the rest of the planet stripped away by collisions billions of years ago.

An artist’s impression of solar system formation, and the formation of a protoplanetary disk filled with gases and dust that over time clump together and smash into each other to form larger and larger bodies. (Gemini Observatory/AURA artwork by Lynette Cook )

That makes Psyche a most interesting place to visit.… Read more

Theorized Northern Ocean of Mars; now long gone.  (NASA)

Change is the one constant in our world– moving in ways tiny and enormous,  constructive and destructive.

We’re living now in a time when a rampaging pandemic circles the globe and when the climate is changing in so many worrisome and potentially devastating ways.

With these ominous  changes as a backdrop, it is perhaps useful to spend a moment with change as it happens in a natural world without humans.  And just how complete that change can be:

For years now, planetary scientists have debated whether Mars once had a large ocean across its northern hemisphere.

There certainly isn’t one now — the north of Mars is parched, frigid and largely featureless.  The hemisphere was largely covered over in a later epoch by a deep bed of lava, hiding signs of its past.

The northern lowlands of Mars, as photographed by the Viking 2 lander. The spacecraft landed in the Utopia Planitia section of northern Mars in 1976. (NASA/JPL)

Because our sun sent out significantly less warmth at the time of early Mars (4.2-3.5  billion years ago,) climate modelers have long struggled to come up with an explanation for how the planet — on average, 137 million miles further out than Earth — could have been anything but profoundly colder than today. And if that world was so unrelentingly frigid, how could there be a surface ocean of liquid water?

But discoveries in the 21st century have strongly supported the long-ago presence of water on a Mars in the form of river valleys, lakes and a water cycle to feed them.  The work done by the Curiosity rover and Mars-orbiting satellites has made this abundantly clear.

An ocean in the northern lowlands is one proposal made to explain how the water cycle was fed.

And now, In a new paper in Journal of Geophysical Research: Planets,  scientists from Japan and the United States have presented modelling and analysis describing how and why Mars had to have a large ocean early in its history to produce the geological landscape that is being found.

Lead author Ramses Ramirez, a planetary scientist with the Earth-Life Science Institute in Tokyo, said it was not possible to determine how long the ocean persisted, but their team concluded that it had to be present  in that early period around 4 billion to 3.5 billion years ago.  That is roughly when what are now known to be river valleys were cut in the planet’s southern highlands.… Read more

Exploring Our Sun Will Help Us Understand Habitability

The surface of the sun, with each “kernel” or “cell” roughly the size of Texas. The movie is made up of images produced by the Daniel Inouye SolarTelescope in Hawaii.  Novel and even revolutionary data and images are also expected from the Parker Solar Probe (which will travel into the sun’s atmosphere, or corona) and the just launched Solar Orbiter, which will study (among many other things) the sun’s polar regions. (NSO/NSF/AURA)

 

Scientists have been  studying our sun for centuries, and at this point know an awful lot about it — the millions of degrees Fahrenheit heat that it radiates out from the corona, the tangled and essential magnetic fields that it creates, the million-miles-per-hour solar wind and the charged high-energy solar particles that can be so damaging to anything alive.

But we have now entered a time when solar science is taking a major leap forward with the deployment of three pioneering instruments that will explore the sun and its surroundings as never before.  One is a space telescopes that will get closer to the sun (by far) than any probe before, another is a probe that will make the first observations of the sun’s poles, and the third is a ground-based solar telescope that can resolve the sun in radically new ways — as seen in the image above, released last month.

Together, NASA’s Parker Solar Probe, the joint European Space Agency-NASA Solar Orbiter mission and the National Science Foundation’s Inouye Solar Telescope on Hawai’i will provide pathways to understand some of the mysteries of the sun.  They include resolving practical issues involving the dynamics  of “space weather” that can harm astronauts and telecommunications systems, and larger theoretical unknowns related to all the material that stars scatter into space and onto planets.

Some of those unresolved questions include determining how and why heat and energy flow from the sun’s inner core to the outer corona and make it so much hotter, determining the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind, the make-up and effects of solar flares and coronal mass ejections, and how and why the sun is able to create and control the heliosphere — the vast bubble of charged particles blown by the solar wind into interstellar space.

 

An illustration of Kepler2-33b, , one of the youngest exoplanets detected to date using NASA Kepler Space Telescope.

Read more

On The Rugged Frontier Of The Hunt For Signs Of Life On Early Earth And Ancient Mars

The vigorously debated finding from the Isua greenstone or supercrustal belt, a 1,200-square-mile area of ancient rocks in Greenland.  Proponents say the rises, from .4 to 1.6 inches tall, are  biosignatures of bacteria and sediment mounds that made up stromatolites almost 3.8 billion years ago.  Critics say additional testing has shown they are the result of non-biological forces.  (Nature and Nutman et al.)

Seldom does one rock outcrop get so many visitors in a day, especially when that outcrop is located in rugged, frigid terrain abutting the Greenland Ice Sheet and can be reached only by helicopter.

But this has been a specimen of great importance and notoriety since it appeared from beneath the snow pack some eight years ago. That’s when it was first identified by two startled geologists as something very different from what they had seen in four decades of scouring the geologically revelatory region – the gnarled Isua supercrustal belt – for fossil signs of very early life.

Since that discovery the rock outcrop has been featured in a top journal and later throughout the world as potentially containing the earliest signature of life on Earth – the outlines of half inch to almost two inch-high stromatolite structures between 3.7 and 3.8 billion years old.

The Isua greenstone, or supracrustal belt contains some of the oldest known rocks and outcrops in the world, and is about 100 miles northeast of the capital, Nuuk.

If Earth could support the life needed to form primitive but hardly uncomplicated stromatolites that close to the initial cooling of the planet, then the emergence of life might not be so excruciatingly complex after all. Maybe if the conditions are at all conducive for life on a planet (early Mars comes quickly to mind) then life will probably appear.

Extraordinary claims in science, however, require extraordinary proof, and inevitably other scientists will want to test the claims.

Within two years of that initial ancient stromatolite splash in a Nature paper (led by veteran geologist Allen Nutman of the University of Wollongong in Australia), the same journal published a study that disputed many of the key observations and conclusions of the once-hailed ancient stromatolite discovery.  The paper concluded the outcrop had no signs of early life at all.

Debates and disputes are common in geology as the samples get older,  and especially in high profile science with important implications.  In this case, the implications of what is in the rocks reach into the solar system and the cosmos. … Read more

Exoplanets Discoveries Flood in From TESS

NASA’s Transiting Exoplanet Survey Satellite (TESS) has hundreds of “objects of interest” waiting to be confirmed as planets in the data from the space telescope’s four cameras.  These three were the first confirmed TESS discoveries, identified last year during its first three months of observing. By the time the mission is done, TESS’s wide-field cameras will have covered the whole sky in search of transiting exoplanets around 200,000 of the nearest (and brightest) stars. (NASA / MIT / TESS)

The newest space telescope in the sky — NASA’s Transiting Exoplanet Survey Satellite, TESS — has been searching for exoplanets for less than a year, but already it has quite a collection to its name.

The TESS mission is to find relatively nearby planets orbiting bright and stable suns, and so expectations were high from the onset about the discovery of important new planets and solar systems.  At a meeting this week at the Massachusetts Institute of Technology devoted to TESS  results,  principal investigator George Ricker pronounced the early verdict.

The space telescope, he said,  “has far exceeded our most optimistic hopes.”  The count is up to 21 new planets and 850 additional  candidate worlds waiting to be confirmed.

Equally or perhaps more important is that the planets and solar systems being discovered promise important results.  They have not yet included any Earth-sized rocky planet in a sun’s habitable zone — what is generally considered the most likely, though hardly the only, kind of planet to harbor life — but they did include planets that offer a great deal when it comes to atmospheres and how they can be investigated.

This infographic illustrates key features of the TOI 270 system, located about 73 light-years away in the southern constellation Pictor. The three known planets were discovered by NASA’s Transiting Exoplanet Survey Satellite through periodic dips in starlight caused by each orbiting world. Insets show information about the planets, including their relative sizes, and how they compare to Earth. Temperatures given for TOI 270’s planets are equilibrium temperatures, (NASA’s Goddard Space Flight Center/Scott Wiessinger)

One of the newest three-planet system is called TOI-270, and it’s about 75 light years from Earth. The star at the center of the system is a red dwarf, a bit less than half the size of the sun.

Despite its small size, it’s brighter than most of the nearby stars we know host planets. And it’s stable, making its solar system especially valuable.

Read more

Exoplanets With Complex Life May Be Very Rare, Even in Their “Habitable Zones”

The term “habitable zone” can be a misleading one, since it describes a limited number of conditions on a planet to make it hospitable to life. (NASA)

 

For years now, finding planets in the habitable zones of their host stars has been a global astrophysical quest and something of a holy grail.  That distance from a star where temperatures could allow H20 to remain liquid some of the time has been deemed the “Goldilocks” zone where life could potentially emerge and survive.

The term is valuable for sure, but many in the field worry that it can be as misleading or confusing as it is helpful.

Because while the habitable zone is a function of the physics and architecture of a solar system, so much more is needed to make a planet actually potentially habitable.  Does it have an atmosphere?  Does it have a magnetic field. Does it orbit on an elliptical path that takes it too far (and too close) to the sun?  Was it sterilized during the birth of the host star and orbiting planets?  What kind of star does it orbit, and how old and luminous is that star?

And then there’s the sometimes confused understanding that many habitable zones may well support complex, even technologically-advanced life.  They are, after all, habitable.

But as a new paper in the Astrophysical Journal makes clear, the likelihood of a habitable zone planet being able to support complex life — anything beyond a microbe — is significantly limited by the amount of toxic chemicals such as carbon monoxide and excesses of carbon dioxide.

Eddie Schwieterman, a NASA postdoc at the University of California, Riverside and lead author of the article, told me that the odds for complex life on most exoplanets in their habitable zones weren’t great.

“A rough estimate is between 10-20% of habitable zone planets are truly suitable for analogs to humans and animals.” he said. “Of course, being located in this part of the habitable zone isn’t enough by itself – you still need the build-up of oxygen via the evolution of oxygenic photosynthesis and certain planetary biogeochemical cycles.”

 

A rendering of the exoplanet Kepler 442 b, compared in size to  Earth.  Kepler 442 b was detected using the Kepler Space Telescope and is 0ne of a handful of planets found so far deemed to be most likely to be habitable. But it’s 1200 light-years away, so learning its secrets will be challenging.

Read more

A Grand Global Competition to Name 100 ExoWorlds

Within the framework of its 100th anniversary commemorations, the International Astronomical Union (IAU) is organising the IAU100 NameExoWorlds global competition that allows any country in the world to give a popular name to a selected exoplanet and its host star. Exoplanet rendering by IAU.

Four years ago, the International Astronomical Union organized a competition to give popular names to 14 stars and 31 exoplanets that orbit them.  The event encouraged 570,000 people to vote and the iconic planet 51 Pegasi b became “Dimidium, ” 55 Cancri b became “Galileo,” and (among others) Formalhaut b became “Dagon.”

It remains unclear how often those popular names are used in either scientific papers or writing about the papers.  But the idea of giving mythical names, names that describe something unique about the planet (or star)  or that nod to famous astronomer or iconic writers has caught on and the IAU has a new naming contest up and running.

This one is the IAU NameExoWorlds global campaign, and almost 100 nations have signed up to organize public national campaigns that will  give new names to a selected exoplanet and its host star.

“This exciting event invites everyone worldwide to think about their collective place in the universe, while stimulating creativity and global citizenship,” shared Debra Elmegreen, IAU President Elect. “The NameExoWorlds initiative reminds us that we are all together under one sky.”

From a large sample of well-studied, confirmed exoplanets and their host stars, the IAU NameExoWorlds Steering Committee assigned a star-planet system to each country, taking into account associations with the country and the visibility of the host star from most of the country.

The national campaigns will be carried out from June to November 2019 and, after final validation by that NameExoWorlds Steering Committee, the global results will be announced in December 2019. The winning names will be used freely in parallel with the existing technical scientific names.

The bulge of the Milky Way, as imaged by the Hubble Space Telescope. Our galaxy is inferred to have hundreds of billions of stars, and even more planets. (NASA, ESA, and T. Brown (STScI);

 

The naming contest flows from the well-established fact that exoplanets are everywhere — at least one around most stars, scientists have concluded.  Some 4,500 exoplanets have been identified so far, but this is but the beginning.  Astronomers are confident there are hundreds of billions of exoplanets — ranging from small and rocky like Earth to massive gas giants much larger than Jupiter — in our galaxy reaches into the many billions.… Read more

NExSS 2.0

Finding new worlds can be an individual effort, a team effort, an institutional effort. The same can be said for characterizing exoplanets and understanding how they are affected by their suns and other planets in their solar systems. When it comes to the search for possible life on exoplanets, the questions and challenges are too great for anything but a community. NASA’s NExSS initiative has been an effort to help organize, cross-fertilize and promote that community. This artist’s concept Kepler-47, the first two-star systems with multiple planets orbiting the two suns, suggests just how difficult the road ahead will be. ( NASA/JPL-Caltech/T. Pyle)

 

The Nexus for Exoplanet System Science, or “NExSS,”  began four years ago as a NASA initiative to bring together a wide range of scientists involved generally in the search for life on planets outside our solar system.

With teams from seventeen academic and NASA centers, NExSS was founded on the conviction that this search needed scientists from a range of disciplines working in collaboration to address the basic questions of the fast-growing field.

Among the key goals:  to investigate just how different, or how similar, different exoplanets are from each other; to determine what components are present on particular exoplanets and especially in their atmospheres (if they have one);  to learn how the stars and neighboring exoplanets interact to support (or not support) the potential of life;  to better understand how the initial formation of planets affects habitability, and what role climate plays as well.

Then there’s the  question that all the others feed in to:  what might scientists look for in terms of signatures of life on distant planets?

Not questions that can be answered alone by the often “stove-piped” science disciplines — where a scientist knows his or her astrophysics or geology or geochemistry very well, but is uncomfortable and unschooled in how other disciplines might be essential to understanding the big questions of exoplanets.

 

The original NExSS team was selected from groups that had won NASA grants and might want to collaborate with other scientists with overlapping interests and goals  but often from different disciplines. (NASA)

The original idea for this kind of interdisciplinary group came out of NASA’s Astrobiology Program, and especially from NASA astrobiology director Mary Voytek and colleague Shawn Domogal-Goldman of the Goddard Space Flight Center, as well as Doug Hudgins of NASA Astrophysics.  It was something of a gamble, since scientists who joined would essentially volunteer their time and work and would be asked to collaborate with other scientists in often new ways.… Read more

Many Worlds Interruptus

I regret that I haven’t been able to file Many Worlds posts for a while, but here is why:

 

X-ray of my wife’s broken ankle

The broken part of my wife’s ankle is the traingle of bone floating near the tibia, to which it should be attached.

She’s had surgery and isn’t supposed to be walking on it for a month.  But now, with the help of several screws holding parts together, she is on the mend.

New posts coming next week!

 … Read more

A Significant Advance: Primitive Earth Life Survives an 18-Month Exposure to Mars-Like Conditions in Space

The European Space Agency’s BIOMEX array, outside the Russian Zvezda module of the ISS. (ESA)

The question of whether simple life can survive in space is hardly new, but it has lately taken on a new urgency.

It is not only a pressing scientific question — might life from Mars or another body have seeded life on Earth?  Might organisms similar to extreme Earth life survive Mars-like conditions? — but it is also has some very practical implications.  If humans are going to some day land and live on the moon or on Mars, they will need to grow food to survive.

So the question is pretty basic:  can Earth seeds or dormant life survive a long journey to deep space and can they then  grow in the protected but still extreme radiation, temperature, and vacuum  of deep space?

It was with these questions in mind that the European Space Agency funded a proposal from the German Institute of Planetary Research to send samples of a broad range of simple to more complex life to the International Space Station in 2014, and to expose the samples to extreme conditions outside the station.

Some of the findings have been reported earlier,  but last month the full results of the Biomex tests (Biology on Mars Experiment) were unveiled in the journal Astrobiology.

And the answer is that many, though certainly not all, of the the samples of snow and permafrost algae, cyanobacteria, archaea, fungi, biofilms, moss and lichens in the  did survive their 533 days of living dangerous in their dormant states.  When brought back to Earth and returned to normal conditions, they returned to active life.

“For the majority of the chosen organisms, it was the first and the longest time they ever were exposed to space and Mars-like conditions,” Jean-Pierre Paul de Vera, principal investigator of the effort, wrote to me.  And the results were promising.

 

For the BIOMEX experiment, on 18 August 2014, Russian cosmonauts Alexander Skvortsov and Oleg Artemyev placed several hundred samples in an experiment container on the exterior of the Zvezda’Russian ISS module. The containers, open to the surrounding space environment, held primitive terrestrial organisms such as mosses, lichens, fungi, bacteria, archaea and algae, as well as cell membranes and pigments.

 

A microbiologist and planetary researcher at the German Space Agency’s Institute of Planetary Research in Berlin, de Vera and his team went from Antarctica to the parched Atacama desert in Chile, from the high Alps to the steppe highlands of central Spain to find terrestrial life surviving in extreme conditions (extremophiles.)Read more

« Older posts

© 2020 Many Worlds

Theme by Anders NorenUp ↑