Category: What a Menagerie (page 1 of 6)

What the JWST is Learning About Exoplanet Atmospheres

We are now well into the era of exoplanet atmospheres, of measurements made possible by the James Webb Space Telescope.  While prior observatories could detect some chemicals in exoplanet atmospheres,  the limits were substantial. This is an artist’s impression of a hot Jupiter with a thick atmosphere transiting its host star. (NASA, ESA, and G. Bacon (STScI)

The James Webb Space Telescope is beginning to reveal previously unknowable facts about the composition of exoplanets — about the presence or absence of atmospheres around the exoplanets and the makeup of any atmospheres that are detected.

The results have been coming in for some months and they are a delight to scientists.  And as with most things about exoplanets, the results are not always what were expected.

For instance, gas giant planets  orbiting our Sun show a clear pattern; the more massive the planet, the lower the percentage of “heavy” elements (anything other than hydrogen and helium) in the planet’s atmosphere.

The James Webb Space Telescope is returning insights into the atmospheres of exoplanets that scientists have long dreamed about obtaining. Some are predicting a new era in exoplanet research. (NASA)

But out in the galaxy, the atmospheric compositions of giant planets do not fit the solar system trend, an international team of astronomers has found.

Researchers discovered that the atmosphere of exoplanet HD149026b, a “hot jupiter” given the name “Smertrios” that orbits a Sun-like star, is super-abundant in the heavier elements carbon and oxygen – far above what scientists would expect for a planet of its mass.

In its “early release” program for exoplanet results, JWST also observed WASP-39 b, a “hot Saturn” (a planet about as massive as Saturn but in an orbit tighter than Mercury) orbiting a star some 700 light-years away.

The atmosphere around the planet provided the first detection in an exoplanet atmosphere of sulfur dioxide (SO2), a molecule produced from chemical reactions triggered by high-energy light from the planet’s parent star.

The Trappist-1 system –seven Earth-sized planets orbiting a red dwarf star only 40 light-years away — is another subject of great interest and JWST has provided some exciting results there too.

While the first Trappist-1 planet studied — the one nearest to the star — apparently has no atmosphere, JWST was able to in effect take the planet’s temperature.  The telescope captured thermal signatures from the planet, which is another first.

When starlight passes through a planet’s atmosphere, certain parts of the light are absorbed by the atmosphere’s elements.

Read more

What The James Webb Space Telescope Can Do For Exoplanet Science and What It Cannot Do

The James Webb Space Telescope, as rendered by an artist. The telescope is scheduled to launch later this month. (NASA)

When the James Webb Space Telescope finally launches (late this month, if the schedule holds) it will forever change astronomy.

Assuming that its complex, month-long deployment in space works as planned, it will become the most powerful and far-seeing observatory in the sky.  It will have unprecedented capabilities to probe the earliest days of the universe, shedding new light on the formation of the first stars and galaxies.  And it will observe in new detail the most distant regions of our solar system.

Deep space astrophysics is what JWST was first designed for in the early 1990s, and that will be its transformative strength.

But much is also being made of what JWST can do for the study of exoplanets and some are even talking about how it just might be able to find biosignatures — signs of distant life.

While it is probably wise to never say never regarding an observatory with the power and capabilities of JWST,  the reality is that it was not designed to look for the exoplanets most likely to be habitable.  Actually, when it was first proposed, the observatory had no exoplanet-studying capabilities at all because no exoplanets had yet been found.

What was added on is substantial and exoplanet scientists say JWST can help advance the field substantially.  But there are definite limits and finding biosignatures — life — is almost certainly a reach too far for JWST.

When starlight passes through a planet’s atmosphere, certain parts of the light are absorbed by the atmosphere’s elements. By studying which parts of light are absorbed, scientists can determine the composition of the planet’s atmosphere. (Christine Daniloff/MIT, Julien de Wit)

Astronomer Jacob Bean of the University of Chicago, who has played a leadership role in planning JWST exoplanet observations for the telescope’s early day, says that people need to know these limitations so the pioneering exoplanet science that will be possible with JWST is not seen as somehow disappointing.

As he explained, it is essential to understand that the kind of exoplanet observing that the JWST will mostly do is “transit spectroscopy.”  This involves staring at a star when an exoplanet is expected to transit in front of it.  When that happens, light from the star will pass through the atmosphere of the exoplanet (if there is one) and through spectroscopy scientists can determine what molecules are in that hoped-for atmosphere.… Read more

Why Does Our Solar System Have No Super-Earths, and Other Questions for Comparative Planetology

An artist’s impression of the exoplanet LHS 1140b, which orbits a red dwarf star 40 light-years from Earth. Using the European Southern Observatory’s telescope at La Silla, Chile, and other telescopes around the world, an international team of astronomers discovered this super-Earth orbiting in the habitable zone around the faint star LHS 1140. This world is a little larger and much more massive than the Earth. (ESO)

Before the explosion in discovery of extrasolar planets, the field of comparative planetology was pretty limited  — confined to examining the differences between planets in our solar system and how they may have come to pass.

But over the past quarter century, comparative planetology and the demographics of planets came to mean something quite different.  With so many planets now identified in so many solar systems, the comparisons became not just between one planet and another but also between one solar system and another.

And the big questions for scientists became the likes of:  How and why are the planetary makeups of distant solar systems often so different from our own and from each other; what does the presence  or absence of large planets in a solar system do to the distribution of smaller planets;  how large can a rocky planet can get before it turns to a gas giant planet; and on a more specific subject, why do some solar systems have hot Jupiters close to the host star and others have cold Jupiters much further out like our own

Another especially compelling question involves our own solar system, though as something of an outlier rather than a prototype.

That question involves the absence in our solar system of anything in the category of a “super-Earth” — a rocky or gaseous extrasolar planet with a mass greater than Earth’s but substantially below those of our solar system’s planets next in mass,  Uranus and Neptune.

The term “super-Earth” refers only to the mass and radii of the planet, and so does not imply anything about the surface conditions or habitability. But in the world of comparative planetology “super-Earths” are very important because they are among the most common sized exoplanets found so far and some do seem to have planetary characteristics associated with habitability.

Yet they do not exist in our solar system.  Why is that?

Artist rendition of Earth in comparison to one of the many super-Earth planets. (NASA)

In a recent article in The Astrophysical Journal Letters,  planetary demographer Gijs D.… Read more

Introducing Hycean Planets

A so-called Hycean planet is one featuring large oceans and a hydrogen atmosphere. A new report from the University of Cambridge suggests this kind of planet, sized between a super-Earth and a mini-Neptunes, could potentially support life. The image features a red dwarf star as the planet’s host star. (Artist rendering by Amanda Smith, University of Cambridge)

Planets beyond our solar system, we now know, come in all shapes, sizes and consistencies.  There are rocky planets, water worlds, gaseous planets, super-Earths, hot Jupiters, tidally locked planets, planets in orbital resonance with each other,  and so much more.

A group of exoplanet researchers at the University of Cambridge have recently proposed a new category of planet, one that has seldom been considered even potentially habitable.  They call them Hycean planets due to the presence of substantial hydrogen in the atmospheres and large oceans (hydrogen and ocean = Hycean) on their surfaces.

And in an article in The Astrophysical Journal, they make the case that under certain conditions, some Hycean planets could, indeed, be habitable.

“Hycean planets open a whole new avenue in our search for life elsewhere,” said Nikku Madhusudhan from Cambridge’s Institute of Astronomy, who led the research.

Many of the prime Hycean candidates identified by the researchers are bigger and hotter than Earth, but the researchers argue that they still have the characteristics to host large oceans that could support microbial life similar to that found in some of Earth’s most extreme watery environments.

Hycean planets, Madhusudhan said in a release, offer a new paradigm for the search for life beyond Earth.

“Essentially, when we’ve been looking for these various molecular signatures, we have been focusing on planets similar to Earth, which is a reasonable place to start,”  he said. “But we think Hycean planets offer a better chance of finding several trace biosignatures.”

Co-author Anjali Piette, also from Cambridge, added: “It’s exciting that habitable conditions could exist on planets so different from Earth.”

An artist rendering of what a possible Hycean planet would look like.  This image is of K2-18b, which has a radius twice that of Earth and is more than eight times as massive as our planet.  The heavy hydrogen atmosphere is present, as is the red dwarf star that it orbits. (Alex Boersma)

There are no planets of this size and type in our solar system, but planets in the Hycean range are quite common in the galaxy.… Read more

A Young Planet Found That May Well Be Making Moons

An image made by the Very Large Telescope in Chile shows a forming planet, the bright spot at right. The overpowering light of the host star is blocked out by a coronagraph inside the telescope. (ESO/A. Müller et al.)

Astronomers have many theories about how planets are formed within the gas, dust, pebbles and gradually rocks of the circumstellar disks that encircle a star after it has been born.  While the general outlines of this remarkable process are pretty well established, many questions large and small remain unanswered.

One is how and when exomoons are formed around these planets, with the assumption that the process that forms planets must also give birth moons.  But the potential moons have been far too small for the current generation of space and ground telescopes to identify.

Now astronomers have detected something almost as significant:  a circumplanetary disk surrounding a young planet that appears to be in the process of making moons.  The moon itself has not been detected, but a forming planet has been found with a ring of dust and gas that surrounds it.  And within that circumplanetary disk, astronomers infer, a moon is possibly being formed.

“Our work presents a clear detection of a disk in which satellites could be forming,” said Dr. Myriam Benisty, an astronomer at the University of Grenoble and the University of Chile.

“The new … observations were obtained at such exquisite resolution that we could clearly identify that the disk is associated with {the exoplanet} and we are able to constrain its size for the first time,” she said in a release.

While the first detection of the planet was made via the European Southern Observatory’s Very Large Telescope in Chile, the more granular observation of the forming planet and its moon-forming disk was made with the Atacama Large Millimeter/submillimeter Array (ALMA), also in Chile.

This ALMA image shows the young PDS 70 planetary system. The system features a star at its center and at least two planets orbiting it, PDS 70b (not visible in the image) and PDS 70c, surrounded by a circumplanetary disk (the dot to the right of the star). Image credit: ALMA / ESO / NAOJ / NRAO / Benisty et al.)

The finding, published in the Astrophysical Journal Letters, came via direct imaging — in effect through extremely high power photography rather through the indirect methods much more common in exoplanet astronomy.… Read more

A Close Exoplanet Found That May Have An Atmosphere Ideal For Study

Planet Gliese 486b is close to us (in a relative sense), rocky, on the small side and may have an atmosphere.  These conclusions come from studying the planet using both the transit and radial velocity techniques, which have been the primary methods used by astronomers to find and characterize exoplanets.  Charts showing the presence of the planet using both techniques are in the blue boxes. (Render Area, Max Planck Institute for Astronomy, MPIA)

Different methods of searching for and finding distant exoplanets give different information about the planets found.

The transit method — where an exoplanets passed in front of its sun and dims the bright sunlight ever so slightly — gives astronomers not only a detection but also its radius or size.

The radial velocity method — where an exoplanet’s gravity causes its host star to “wobble” in a way that can be measured — provides different information about mass and orbit.

If a planet can be measured by both the transit and radial velocity methods, an important added dimension can be determined — how dense the planet might be.  This tells us if the planet is rocky or gaseous, watery or even if it has a central core and might have an atmosphere.  So many things have to go right that this kind of dual detection has seldom been accomplished for a  relatively small and rocky planet, but such a new planet has now been found.

The planet, Gliese 486b, is a super-Earth orbiting its host star at only 24 light-years away.  That makes the planet the third closest transiting exoplanet to Earth that is known, and the closest with a measured mass that transits a red dwarf star.

The authors of the study in the journal Science say Gliese 486b is an ideal candidate for learning how to best search for and characterize an all-important atmosphere, and to study potential habitability, too.  Future telescopes will make this kind of work more of a reality.

“Gliese 486 b is not hot enough to be a lava world,” lead author Trifon Trifonov of the Max-Planck-Institut für Astronomie and colleagues write. “But its temperature of ~700 Kelvin (800 degrees Fahrenheit) makes it suitable for emission spectroscopy and …. studies in search of an atmosphere.”

Artist impression of the surface of the newly discovered hot super-Earth Gliese 486 b. With a temperature of about 700 Kelvin (almost 800 degrees Fahrenheit), 486b possibly has an atmosphere.

Read more

More Weird and Wild Planets

A world called TOI-849b could be the exposed, naked core of a former gas giant planet whose atmosphere was blasted away by its star.  Every day is a bad day on planet TOI-849b. . It hugs its star so tightly that a year – one trip around the star – takes less than a day. And it pays a high price for this close embrace: an estimated surface temperature of nearly 2,800 degrees Fahrenheit (1,500 degrees Celsius) It’s a scorcher even compared to Venus, which is 880 degrees Fahrenheit (471 degrees Celsius). About half the mass of our own Saturn, this planet orbits a Sun-like star more than 700 light-years from Earth. (NASA/Exoplanet Exploration Program)

The more we learn about the billions upon billions of planets that orbit beyond our solar system, the more we are surprised by the wild menagerie of objects out there.  From the start, many of these untolled planets have been startling, paradigm-breaking,  mysterious, hellish, potentially habitable and just plain weird.  Despite the confirmed detection of more than 4,000 exoplanets, the job of finding and characterizing these worlds remains in its early phases.  You could make the argument that  learning a lot more about these distant exoplanets and their solar systems is not just one of the great tasks of future astronomy, but of future science.

And that is why Many Worlds is returning to the subject of “Weird Planets,” which first appeared in this column at the opening of 2019.  It has been the most viewed column in our archive, and a day seldom goes by without someone — or some many people — decide to read it.

So here is not a really a sequel, but rather a continuation of writing about this unendingly rich subject.  And as I will describe further on,  almost all of the planets on display so far have been detected and characterized without ever having been seen.  The characteristics and colors presented in these (mostly) artistic renderings are the result of indirect observing and discovery — measuring how much light dims when a faraway planet crosses its host star, or how much the planet’s gravity causes its sun to move.

As a result, these planets are sometimes called “small, black shadows.” Scientists can infer a lot from the indirect measurements they make and from the beginnings of the grand effort to spectroscopically read the chemical makeup of exoplanet atmospheres. … Read more

Sparkling Gifts From the Hubble Space Telescope, Thirty Years Into Its Mission

This Hubble image captures globular star cluster (NGC 6541) that is roughly 22,000 light-years from Earth.  A globular cluster is a spherical collection of stars that orbits a galactic core. They are very tightly bound by gravity, which gives them their spherical shapes,and relatively high density of stars toward their centers.  The cluster is bright enough that backyard stargazers in the Southern Hemisphere can spot it with binoculars, though certainly not in this detail. (NASA, ESA, and G. Piotto (Università degli Studi di Padova)

For almost 30 years now, the Hubble Space Telescope has transformed how we see the cosmos.  In terms of scientific output as well as making visible the splendors of the sky above us, the Hubble has been arguably the most consequential telescope ever to peer into space.

To commemorate 30 years of Hubble science and images, NASA and the European Space Agency have released 30 previously unpublished images of galaxies, star clusters and nebula from what is known as the Caldwell catalogue,  a collection compiled by British amateur astronomer and science communicator Sir Patrick Caldwell-Moore.

These images have been taken by Hubble throughout its time in space and used for scientific research or for engineering tests, but NASA had not fully processed the images for public release until now.

At the end of a difficult year, they offer the glitter, the grandeur and the cosmic marvel  that the Hubble provides so well and that perhaps people could use right now.

This Hubble image captures a small region on the edge of the inky Coalsack Nebula.  A nebula is an enormous cloud of dust and gas occupying the space between stars and acting as a nursery for new stars.  Coalsack is a “dark nebula” which completely blocks out visible wavelengths of light from objects behind it. The image was made  using Hubble’s Advanced Camera for Surveys in both visible and infrared wavelengths.  (NASA, ESA, and R. Sahai of NASA’s Jet Propulsion Laboratory)

The Hubble famously entered into Earth orbit and began its mission with the calamitous discovery of a near-fatal mistake — the main mirror had been ground incorrectly and could not accomplish much viewing.  The telescope was about 340 miles from Earth and never before had NASA undertaken a mission to repair a spacecraft that far away.

But in 1993 seven astronauts flew to the Hubble on the space shuttle Endeavour, spent five days repairing it and the rest is history. … Read more

Cores, Planets and The Mission to Psyche

The asteroid Psyche will be the first metal-rich celestial body to be visited by a spacecraft.  The NASA mission launches in 2022 and is expected to arrive at the asteroid in late 2026.  A central question to be answered is whether Psyche is the exposed  core of a protoplanet that was stripped of its rocky mantle. (NASA)

Deep inside the rocky planets of our solar system, as well as some solar system moons,  is an iron-based core.

Some, such as Earth’s core,  have an inner solid phase and outer molten phase, but the solar system cores studied so far are of significantly varied sizes and contain a pretty wide variety of elements alongside the iron.  Mercury, for instance, is 85 percent core by volume and made up largely of iron, while our moon’s core is thought to be 20 percent of its volume and is mostly iron with some sulfur and nickel.

Iron cores like our own play a central role in creating a magnetic field around the planet, which in turn holds in the atmosphere and may well be essential to make a planet habitable.  They are also key to understanding how planets form after a star is forged and remaining dense gases and dust are kicked out to form a protoplanetary disk, where planets are assembled.

So cores are central to planetary science, and yet they are obviously hard to study.  The Earth’s core starts about 1,800 miles below the surface, and the cores of gas giants such as Jupiter are much further inward, and even their elemental makeups are not fully understood.

All this helps explains why the upcoming NASA mission to the asteroid Psyche is being eagerly anticipated, especially by scientists who focus on planetary formation.

Scheduled to launch in 2022, the spacecraft will travel to the main asteroid belt between Mars and Jupiter and home in on what has been described as an unusual “metal body,”  which is also one of the largest asteroids orbiting the sun.

While some uncertainty remains,  it appears that Psyche is the  exposed nickel-iron core of a long-ago emerging rocky protoplanet, with the rest of the planet stripped away by collisions billions of years ago.

An artist’s impression of solar system formation, and the formation of a protoplanetary disk filled with gases and dust that over time clump together and smash into each other to form larger and larger bodies. (Gemini Observatory/AURA artwork by Lynette Cook )

That makes Psyche a most interesting place to visit.… Read more

How Many Habitable Zone Planets Can Orbit a Host Star?

This representation of the Trappist-1 system shows which planets could potentially have temperature conditions which would allow for the presence of liquid water, seen generally as essential for life.  The inner three planets are likely too hot, and the outer planet is probably too cold, but the middle three planets might be just right. (NASA / JPL-Caltech)

Our solar system has but one planet orbiting in what is commonly known as the habitable zone — at a distance from the host star where water could be liquid at times rather than always ice or gas.  That planet, of course, is Earth.

But from a theoretical, dynamical perspective, does this always have to be the case?  The answer to that question is no because a number of stars are known to have more than one habitable zone planet.

Now a team from the University of California, Riverside has produced a study that concludes as many as seven Earth-sized, habitable zone planets could orbit a single star — if there were no large Jupiter-sized planets in the system and if the star was of a particular type.

The article, published in the Astronomical Journal, concluded that seven habitable zone planets was the maximum for a star, but a sun such as ours could potentially support six planets with sometimes liquid water — a condition considered essential for life.

Study leader Stephen Kane, an astrobiologist who focuses on potentially habitable exoplanets, said he had been studying the nearby solar system Trappist-1, which has three Earth-like planets in its habitable zone and seven planets all together.

“This made me wonder about the maximum number of habitable planets it’s possible for a star to have, and why our star only has one,” Kane said.

With the discovery of an eighth planet, the Kepler-90 system is the first to tie with our solar system in number of planets. Artist’s concept. Credit: NASA/Ames Research Center/Wendy Stenzel

His conclusion:

“Even though (our solar system) only has one planet in the habitable zone, it’s not necessarily the typical situation. A far more typical scenario may be to have many planets in the habitable zone, depending on the presence of a giant planet.”

More later about the destabilizing effects of giant planet, but the Kane (and others) say that looking for solar systems without Jupiter-size planets has become increasingly important because of this effect on other terrestrial planets.

To determine how many habitable zone planets might be possible in a solar system, his team created a model system in which they simulated planets of various sizes orbiting their stars.

Read more
« Older posts

© 2023 Many Worlds

Theme by Anders NorenUp ↑