Category: Planetary Systems (page 1 of 13)

Many Planets Form in a Soup of Life-Friendly Organic Compounds

Artist’s depiction of a protoplanetary disk with young planets forming around a star. The right-side panel zooms in to show various organic molecules that are accreting onto a planet. (M.Weiss/Center for Astrophysics | Harvard & Smithsonian)

One of the more persuasive arguments in favor of the potential existence of life beyond Earth is that the well-known chemical building blocks of that life are found throughout the galaxy.  These chemical components aren’t all present in all examined solar systems and planets, but they are common and behave in ways familiar to scientists here.

And when it comes elements and compounds found on distant planets but not found here, there just aren’t many. That doesn’t mean they don’t exist — some unstable compounds in interstellar space, for instance — but rather that the cosmos holds many surprises but none have involved extraterrestrial elements or compounds near planets or stars.

This is in large part the result of how elements are formed in the universe.  Other than hydrogen and helium, all other elements are forged in the thermonuclear explosion of stars that have exhausted their supply of fuel.  These massive explosions (supernovae) then shoot the newly-formed elements out into space where they can and do collect in gas and dust clouds that will form other new stars.  They are spread throughout the disks that form around new stars and over time they become components of new planets in formation.

This galactic evolution includes the bonding together of carbon-based organic compounds — the building blocks of life as we know it.  They are an essential component to any theory of a planet’s habitability and,  while their presence in space and star nurseries has been known for some time,  they have remained a subject of great interest but limited detailed knowledge.

That is why an international team from the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass. set out to intensively study five disks forming around young stars to determine more precisely what organic compounds were present and available for objects developing into planets.

And the results are striking:  The abundance of organic material detected was 10 to 100 times more than expected.

“These planet-forming disks are teeming with organic molecules, some of which are implicated in the origins of life here on Earth,” said team leader Karin Öberg. “This is really exciting; the chemicals in each disk will ultimately affect the type of planets that form and determine whether or not the planets can host life.”… Read more

Introducing Hycean Planets

A so-called Hycean planet is one featuring large oceans and a hydrogen atmosphere. A new report from the University of Cambridge suggests this kind of planet, sized between a super-Earth and a mini-Neptunes, could potentially support life. The image features a red dwarf star as the planet’s host star. (Artist rendering by Amanda Smith, University of Cambridge)

Planets beyond our solar system, we now know, come in all shapes, sizes and consistencies.  There are rocky planets, water worlds, gaseous planets, super-Earths, hot Jupiters, tidally locked planets, planets in orbital resonance with each other,  and so much more.

A group of exoplanet researchers at the University of Cambridge have recently proposed a new category of planet, one that has seldom been considered even potentially habitable.  They call them Hycean planets due to the presence of substantial hydrogen in the atmospheres and large oceans (hydrogen and ocean = Hycean) on their surfaces.

And in an article in The Astrophysical Journal, they make the case that under certain conditions, some Hycean planets could, indeed, be habitable.

“Hycean planets open a whole new avenue in our search for life elsewhere,” said Nikku Madhusudhan from Cambridge’s Institute of Astronomy, who led the research.

Many of the prime Hycean candidates identified by the researchers are bigger and hotter than Earth, but the researchers argue that they still have the characteristics to host large oceans that could support microbial life similar to that found in some of Earth’s most extreme watery environments.

Hycean planets, Madhusudhan said in a release, offer a new paradigm for the search for life beyond Earth.

“Essentially, when we’ve been looking for these various molecular signatures, we have been focusing on planets similar to Earth, which is a reasonable place to start,”  he said. “But we think Hycean planets offer a better chance of finding several trace biosignatures.”

Co-author Anjali Piette, also from Cambridge, added: “It’s exciting that habitable conditions could exist on planets so different from Earth.”

An artist rendering of what a possible Hycean planet would look like.  This image is of K2-18b, which has a radius twice that of Earth and is more than eight times as massive as our planet.  The heavy hydrogen atmosphere is present, as is the red dwarf star that it orbits. (Alex Boersma)

There are no planets of this size and type in our solar system, but planets in the Hycean range are quite common in the galaxy.… Read more

Findings Suggest that Red Dwarf Stars May Not Sterilize Many Exoplanets As Feared

An illustration of a red dwarf star with orbiting exoplanet. The question of whether this very common type of star can support habitable planets is a much debated one. (NASA)

Red dwarf suns are the most common in the universe, and many of the exoplanets officially discovered so far orbit this type of “cool” star.  Red dwarfs are much smaller and less powerful than the G type stars such as our own sun, and it is easier to detect exoplanets orbiting them because of their reduced size and energy.

As a result, a number of relatively nearby red dwarf stars — in the Trappist-1 system, Proxima Centauri and Barnard’s star, for instance — are avidly studied for their potential habitability.  The exoplanets of red dwarfs tend to orbit much closer than around other larger stars, but the suns have that lower radiative power and so some are considered habitable candidates.  And if they are indeed habitable, they could be for a very long time because red dwarfs live much longer than most other stars.

But there have been two (at least) problems with the habitable red dwarf exoplanet scenario.  The first is that many of the planets so close to their star are tidally locked, meaning that only one side ever faces the sun.  Some have argued a tidally locked planet can still be habitable, but it would not be easy.

More crucial, however, is that red dwarf stars are known for sending out many, many powerful solar flares, especially during their solar infancy and childhood.  These high radiation and particle flares could and would potentially kill any life emerging on a dwarf exoplanet, and the stellar flares could even sterilize the planets’ atmosphere for all time.  Although direct observations have not shown this deadly scenario to be inevitable or even present, the red dwarf flaring is well documented.  And so potentially the flares have seemed to rule out, or make improbable, life on an estimated 75 percent of the stars in our galaxy.

This is why there is interest in the astrobiology world about a new paper that addresses a particular kind of stellar flare that would hit red dwarf exoplanets.  Such studies of how the behavior of a star effects orbiting planets is one of the less well studied aspects of the exoplanet field, and so the paper is especially welcomed.

And the results suggests that the red dwarf flares would strike orbiting exoplanets from an angle rather than straight on, and therefore would land in a way that would theoretically minimize damage to potential atmospheres and life.… Read more

The Many Ways The James Webb Space Telescope Could Fail

Artist rendering of the James Webb Space Telescope when it has opened and is operating. The telescope is scheduled to launch in November, 2021. (NASA)

When a damaged Apollo 13 and its crew were careening to Earth, mission control director Gene Kranz famously told the assembled NASA team that “failure is not an option.”  Actually, the actor playing Kranz in the “Apollo 13” movie spoke those words, but by all accounts Kranz and his team lived that phrase, with a drive that became a reality.

That kind of hard-driving confidence now seems to be built into NASA’s DNA, and with some tragic exceptions it has served the agency well in its myriad high-precision and high-drama ventures.

So it was somewhat surprising (and a bit refreshing)  to read the recent blog post from Thomas Zurbuchen,  NASA’s Associate  Administrator for the Space Science Directorate, on the subject of the scheduled November launch of the James Webb Space Telescope.

Thomas Zurbuchen, NASA’s Associate Administrator of the Space Science Directorate, with the new eyeglasses he introduced in his blog. (NASA)

“Those who are not worried or even terrified about (the challenges facing the JWST mission) are not understanding what we are trying to do,” he wrote.

“For most missions, launch contributes the majority of mission risk – if the spacecraft is in space, most risk is behind us. There are few types of missions that are very much different with most risk coming after launch.

“We have already performed one such mission in February when we landed on Mars. For the Perseverance rover, only 10-20% of the risk was retired during launch, perhaps 50% during the landing, and we are in the middle of the residual risk burn down as we are getting ready to drill and collect the precious Mars samples with the most complex mechanical system ever sent to another planet.

“The second such mission this year is Webb. Like a transformer in the movies, about 50 deployments need to occur after launch to set up the huge system. With 344 so-called single point failures – individual steps that have to work for the mission to be a success – this deployment after launch will keep us on edge for 3 weeks or so. For comparison, this exceeds single point failures for landing on Mars by a factor of 3, and that landing lasted only 7 minutes.”

Zurbuchen is confident that the Webb team and technology is up to the challenge but still, that is quite a risk profile.… Read more

A Young Planet Found That May Well Be Making Moons

An image made by the Very Large Telescope in Chile shows a forming planet, the bright spot at right. The overpowering light of the host star is blocked out by a coronagraph inside the telescope. (ESO/A. Müller et al.)

Astronomers have many theories about how planets are formed within the gas, dust, pebbles and gradually rocks of the circumstellar disks that encircle a star after it has been born.  While the general outlines of this remarkable process are pretty well established, many questions large and small remain unanswered.

One is how and when exomoons are formed around these planets, with the assumption that the process that forms planets must also give birth moons.  But the potential moons have been far too small for the current generation of space and ground telescopes to identify.

Now astronomers have detected something almost as significant:  a circumplanetary disk surrounding a young planet that appears to be in the process of making moons.  The moon itself has not been detected, but a forming planet has been found with a ring of dust and gas that surrounds it.  And within that circumplanetary disk, astronomers infer, a moon is possibly being formed.

“Our work presents a clear detection of a disk in which satellites could be forming,” said Dr. Myriam Benisty, an astronomer at the University of Grenoble and the University of Chile.

“The new … observations were obtained at such exquisite resolution that we could clearly identify that the disk is associated with {the exoplanet} and we are able to constrain its size for the first time,” she said in a release.

While the first detection of the planet was made via the European Southern Observatory’s Very Large Telescope in Chile, the more granular observation of the forming planet and its moon-forming disk was made with the Atacama Large Millimeter/submillimeter Array (ALMA), also in Chile.

This ALMA image shows the young PDS 70 planetary system. The system features a star at its center and at least two planets orbiting it, PDS 70b (not visible in the image) and PDS 70c, surrounded by a circumplanetary disk (the dot to the right of the star). Image credit: ALMA / ESO / NAOJ / NRAO / Benisty et al.)

The finding, published in the Astrophysical Journal Letters, came via direct imaging — in effect through extremely high power photography rather through the indirect methods much more common in exoplanet astronomy.… Read more

Will The Habitable Exoplanet Observatory (HabEx) — Or Something Like It — Emerge As NASA’s Next Great Observatory?

Artist impression of HabEx spacecraft and a deployed starshade 47,000 miles away, with an exoplanet made visible by the starshade’s blocking of stellar light. (NASA)

Some time later this summer, it is predicted, the National Academy of Sciences will release its long-awaited Decadal Survey for astrophysics, which is expected to recommend the science and architecture that NASA should embrace for its next “Great Observatory.”

Many Worlds earlier featured one of the four concepts in the running — LUVOIR or the Large UV/Optical/IR Surveyor.  With a segmented mirror potentially as wide as 50 feet in diameter, it would revolutionize the search for habitable exoplanets and potentially could detect one (or many) distant planets likely to support life.

Proposed as a “Great Observatory” for the 2030s in the tradition of the Hubble Space Telescope and the James Webb Space Telescope (scheduled to launch later this year), LUVOIR would allow for transformative science of not only exoplanets but many other fields of astronomy as well.

Also under serious consideration is the Habitable Exoplanet Observatory, HabEx, which would also bring unprecedented capabilities to the search for life beyond Earth.  Its mirror would be considerably smaller than that proposed for LUVOIR and it would have fewer chances to find an inhabited world.

But it is nonetheless revolutionary in terms of what it potentially can do for exoplanet science and it could come with a second spacecraft that seems to be out of science fiction,  designed to block out starlight so exoplanets nearby can be observed. That 52-meter (or 170-foot) petal-rimmed, light-blocking disc is called a starshade or an occulter, and it would fly 76,600 kilometers (or 47,000 miles) away from the HabEx spacecraft and would work in tandem with the telescope to make those close-in exoplanet observations possible.

While the capabilities of HabEx are fewer compared to LUVOIR and the potential harvest of habitable or inhabited planets is less, HabEx nonetheless would be cutting edge and significantly more capable than the Hubble Space Telescope in nearly every way, while also being less expensive than LUVOIR and requiring less of a technology reach.

Scott Gaudi, an Ohio State University astronomer, was co-chair of the NASA-created team that spent three years studying, engineering and then proposing the HabEx concept. He put the potential choice between HabEx and LUVOIR this way:  “Do you want to take a first step or a first leap?  HabEx is a major step; LUVOIR is a huge leap.”… Read more

And Then There Were Three: ESA Follows NASA in Selecting a Mission to Venus

Artist illustration of the EnVision orbiter at Venus (ESA/VR2Planets/DamiaBouic)

It was quite a week for Venus scientists. Just seven days after NASA announced the selection of two Venus missions, DAVINCI+ and VERITAS, the European Space Agency (ESA) revealed that a third Venus mission had been chosen for the agency’s medium-class mission category.

(See last week’s post here on Many Worlds about DAVINCI+ and VERITAS)

The new mission is named EnVision, and will be ESA’s second Venus mission following Venus Express (2005 – 2014), which investigated the Venusian climate. While EnVision is an orbiter like Venus Express and VERITAS, its focus is the planet’s geological circulation system that links the atmosphere, surface and interior.

In case you are starting to get your Venus missions in a tangle, the set can be broadly divided up as follows:

Venus Express (ESA: 2005 – 2014) and Akatsuki (JAXA: 2015 – current) are both Venus orbiters focussed on the planet’s climate, returning information about the rapidly rotating upper atmosphere and acidic cloud deck of Venus.

DAVINCI+ (NASA: est. 2029 launch) is an orbiter and descending probe that will dive through the Venusian atmosphere to return top-to-bottom data on the planet’s stifling gases.

VERITAS (NASA: est. 2028 launch) is an orbiter focussed on Venus’s surface and the deep interior. VERITAS will bring us global maps in three-dimensions at a resolution of 30m. This will knock the socks off our current images from NASA’s Magellan orbiter (1989 – 1994), which had a resolution of around 200m.

EnVision (ESA: early 2030s) is the mission focused on how these environments are linked together. Equipped with an instrument suite that covers the top of the atmosphere through to below the planet surface, EnVision will probe how the different regions influence one another to create the planet’s internal systems.

“EnVision has a holistic approach,” explained Jörn Helbert who is a member of the EnVision team. “The larger and more complex payload studies Venus from the top of the atmosphere all the way to the subsurface, with a focus on understanding how the coupled system on Venus works.”

Artist illustration of the EnVision spacecraft, reflecting the goal of understanding why Venus and Earth are so different (NASA / JAXA / ISAS / DARTS / Damia Bouic / VR2Planets).

The coupled system is at the heart of how habitability can develop on rocky planets. A major player in the Earth’s environment is the ability to cycle carbon between the atmosphere, surface and planet mantle.… Read more

Return to Hell: NASA Selects Two Missions to Venus to Explore the Pathway to Habitability

Artists’ renderings show the VERITAS spacecraft (left) and DAVINCI+ probe (right) as they arrive at Venus (Lockheed Martin).

For NASA scientists, Venus missions must feel like buses. You wait thirty years for one, and then two come along at once.

Last week, NASA selected two Venus missions for the space agency’s Discovery Program; solar system exploration missions that can tuck under a lower cost cap than candidates for NASA’s New Horizons or Flagship categories. The first of these is DAVINCI+, which is an orbiter equipped with a descending probe that will take a big whiff of Venus’s stifling atmosphere. The second is the VERITAS orbiter that plans to peer through the clouds to scrutinise the Venusian surface.

While Europe and Japan have both visited Venus more recently than NASA (in fact, the Japanese orbiter is still there), there is little doubt that our inner neighbor is dramatically under-explored compared to Mars. But why the past neglect, and why go twice now?

The answer to the first question is perhaps the easiest.

Venus is hell.

The planet is wrapped in a thick atmosphere consisting of carbon dioxide and clouds of sulfuric acid that beat down on the Venusian surface with pressures nearly one hundred times higher than on Earth and create temperatures sufficient to melt lead.

These conditions have made it difficult to follow the usual pattern of planetary exploration from fly-bys and orbiters to landers and rovers. The Venusian surface is so inhospitable that a rover like NASA’s Mars Perseverance would become rover goop. Although recent engineering combined with high-temperature electronics means that the surface is no longer impossible, it does greatly add to the challenge (and therefore cost) of a lander mission.

Professor Stephen Kane, University of California, Riverside.

Hell-scape conditions have also resulted in Venus being overlooked for any astrobiological studies compared to (the still rather nasty but at least you can stand a rover on the surface) Mars. This makes the urgency to explore Venus now particularly surprising. The missions are a quest to understand habitability. The bottom line is that the hell world of Venus is essential to understanding how a planet becomes habitable and to discovering other habitable worlds outside our solar system.

“Imagine you live in a small town full of life,” explains Professor Stephen Kane from the DAVINCI+ team. “The nearest town is the same size and seems it was once identical. But now, it’s burned to the ground with no sign of life.… Read more

Sure UFOs Exist. But There’s No Reason To Conclude That Aliens Are Flying Them

An apparently unidentified object detected on a Navy plane’s infrared camera. (U.S. Department of Defense/Navy Times)

It seems to happen with some regularity.  Claims that Unidentified Flying Objects are visiting us have captured the public imagination once more and a big reveal is expected soon.

That will come, oddly, from a government report required to be released by the end of June that will supposedly detail the many sightings made by high-flying military pilots and unexplained detections by satellites.  The requirement was added to the Covid relief package that was passed by Congress in December and orders the Department of Defense and the Office of the DIrector of National Intelligence to release their unclassified findings on the subject, information that has been apparently collected for decades.

In terms of national defense, these reports could indeed be meaningful.  If other nations are sending

This well known poster was first introduced during an episode of the 1990s television show, “The X Files.” and featured in a subsequent movie.

drones or satellites of some sort (true UFOs) to get close to and study American assets, then that’s important news.

But, of course, the UFO drama is overwhelmingly about something else:  The claimed presence of intelligent aliens that are scoping out Earth for reasons ranging from awe-inspiring or extremely worrisome.

The report — which sources say concludes that there is insufficient evidence to confirm or conclusively rule out extraterrestrial UFO sightings —  will no doubt be widely consumed by a population with many “UFO believers.”  After all, a 2019 Gallup poll found that 33 percent of American adults said that alien spacecraft from distant planets and galaxies have been visiting us.

I find all this to be not only unfortunate but also misguided and potentially damaging.  The moment will pass with no intelligent aliens identified, and then will return again some time in the future for another round.

The potential damage is to the very real, very challenging, very cutting-edge science being conducted around the world that seeks to identify actual signs of actual extraterrestrial life in the cosmos, or at least to know what to look for when we have space telescopes and instruments with the necessary power.

And I’m concerned that a focus on UFOs imagined to be carrying intelligent alien life takes away from the hard-won seriousness of their enormous and so compelling scientific effort.  This is especially true now that the scientific search for extraterrestrial life is on the front burner for the National Academy of Sciences, which will soon make recommendations about a next grand observatory for the 2030s.… Read more

China’s Presence in Space Grows and So Do Its Accomplishments

The Chinese Mars lander, with photo taken by the Zhurong rover after it rolled down onto the surface of Mars. (Chinese National Space Administration)

These are heady days for the Chinese space program.

On the heels of a successful 2019 mission to the dark side of the moon and the launch of the core of an ambitious low Earth orbit space station,  the Chinese National Space Administration has done what only NASA has accomplished before — landing a rover on Mars and then setting it into motion on the surface of the planet.

The Zhurong rover, which is named after an ancient fire god in Chinese mythology, rolled off its lander on Saturday and has begun its planned three-month mission.

The rover carries instruments to study the planet’s surface rocks and atmosphere using radar, spectroscopy and a magnetic field detector. It will also look for signs of life, including any subsurface water or ice.

The solar-powered, 530-pound and  six-wheeled robot will be exploring Utopia Planitia in Mars’ northern hemisphere – the general area where NASA’s Viking 2 lander touched down in 1975.  Zhurong will join NASA’s much larger (more than 2,200 pound) Perseverance and Curiosity rovers now operating on Mars.

“We hope we can get a comprehensive covering of Martian topography, landform and environment, and the exploratory data of the radar detecting the Martian subsurface during one Martian year,” said deputy chief commander of the mission, Zhang Yuhua.

“By doing so, our country will have our own abundant and first-hand data about Martian resources,” she said.

The Chinese Mars lander is powered by solar panels and is expected to explore for at least three months.  (Rendering by the Chinese National Space Administration)

While the rover will itself not bring many new technologies and approaches to Mars science, the architecture of the mission is unprecedented.  The Tianwen-1 spacecraft that brought the rover to Mars orbited the planet for more than three months before deploying the lander and rover.  Part of the spacecraft will remain in orbit as a communications hub.

All NASA missions have flown directly to the surface without first going into orbit around Mars.

While the Utopia Planitia region was explored to some extent by Viking 2, much more is known about the region now then was known in the 1970s.

The plains are part of the northern lowlands of Mars, and some theorize that the region was once covered by a great “Northern Ocean.”  Read more

« Older posts

© 2021 Many Worlds

Theme by Anders NorenUp ↑