Category: Our World (page 1 of 4)

If Bacteria Could Talk

 

Hawaiian lava cave microbial mats appear to have the highest levels and diversity of genes related to quorum sensing so far.  (Stuart Donachie, University of Hawai`i at Mānoa)

Did you know that many bacteria — some of the oldest lifeforms on Earth — can talk?  Really.

And not only between the same kind of single-cell bacteria, but  back and forth with members of other species, too.

Okay, they don’t talk in words or with sounds at all.  But they definitely communicate in a meaningful and essential way, especially in the microbial mats and biofilms (microbes attached to surfaces surrounded by mucus) that constitute their microbial “cities.”

Their “words” are conveyed via chemical signaling molecules — a chemical language — going from one organism to another,  and are a means to control when genes in the bacterial DNA are turned “on” or “off.”  The messages can then be translated into behaviors to protect or enhance the larger (as in often much, much larger) group.

Called “quorum sensing,” this microbial communication was first identified several decades ago.  While the field remains more characterized by questions than definitive answers, is it clearly growing and has attracted attention in medicine, in microbiology and in more abstract computational and robotics work.

Most recently,  it has been put forward as chemically-induced behavior that can help scientists understand how bacteria living in extreme environments on Earth — and potential on Mars —  survive and even prosper.  And the key finding is that bacteria are most successful when they form communities of microbial mats and biofilms, often with different species of bacteria specializing in particular survival capabilities.

Speaking at the recent Astrobiology Science Conference in Seattle,  Rebecca Prescott, a National Science Foundation  Postdoctoral Research Fellow in Biology said this community activity may make populations of bacteria much more hardy than otherwise might be predicted.

 

Quorum sensing requires a community. Isolated Bacteria (and Archaea) have nobody to communicate with and so genes that are activated by quorum sensing are not turned “on.”

“To help us understand where microbial life may occur on Mars or other planets, past or present, we must understand how microbial communities evolve and function in extreme environments as a group, rather than single species,” said Prescott,

“Quorum sensing gives us a peek into the interactive world of bacteria and how cooperation may be key to survival in harsh environments,” she said.

Rebecca Prescott  is a National Science Foundation Postdoctoral Fellow in Biology (1711856) and is working with principal investigator Alan Decho of the University of South Carolina on a NASA Exobiology Program grant.

Read more

The Interiors of Exoplanets May Well Hold the Key to Their Habitability

Scientists have had a working — and evolving — understanding of the interior of the Earth for only a century or so.  But determining whether a distant planet is truly habitable may require an understanding of its inner dynamics — which will for sure be a challenge to achieve. (Harvard-Smithsonian Center for Astrophysics)

The quest to find habitable — and perhaps inhabited — planets and moons beyond Earth focuses largely on their location in a solar system and the nature of its host star,  the eccentricity of its orbit, its size and rockiness, and the chemical composition of its atmosphere, assuming that it has one.

Astronomy, astrophysics, cosmochemistry and many other disciplines have made significant progress in characterizing at least some of the billions of exoplanets out there, although measuring the chemical makeup of atmospheres remains a immature field.

But what if these basic characteristics aren’t sufficient to answer necessary questions about whether a planet is habitable?  What if more information — and even more difficult to collect information — is needed?

That’s the position of many planetary scientists who argue that the dynamics of a planet’s interior are essential to understand its habitability.

With our existing capabilities, observing an exoplanet’s atmospheric composition will clearly be the first way to search for signatures of life elsewhere.   But four scientists at the Carnegie Institution of Science — Anat Shahar, Peter Driscoll, Alycia Weinberger, and George Cody — argued in a recent perspective article in Science that a true picture of planetary habitability must consider how a planet’s atmosphere is linked to and shaped by what’s happening in its interior.

They argue that on Earth, for instance, plate tectonics are crucial for maintaining a surface climate where life can fill every niche. And without the cycling of material between the planet’s surface and interior, the convection that drives the Earth’s magnetic field would not be possible and without a magnetic field, we would be bombarded by cosmic radiation.

What makes a planet potentially habitable and what are signs that it is not. This graphic from the Carnegie paper illustrates the differences (Shahar et al.)

 

“The perspective was our way to remind people that the only exoplanet observable right now is the atmosphere, but that the atmospheric composition is very much linked to planetary interiors and their evolution,” said lead author Shahar, who is trained in geological sciences. “If there is a hope to one day look for a biosignature, it is crucial we understand all the ways that interiors can influence the atmospheric composition so that the observations can then be better understood.”

“We need a better understanding of how a planet’s composition and interior influence its habitability, starting with Earth,” she said. 

Read more

A Magical Solar Eclipse From 1900, Recovered and Instructive

 

Sometimes relics from the past help put the present into better focus.

Recovered footage of a 1900 total eclipse of the sun — believed to be the first captured — has been scanned, restored and then reassembled and retimed frame by frame to create a memorable and kind of spooky look at early astronomy. The film was found at the Royal Astronomical Society in London, reconstructed by the British Film Institute and made public this week.

As explained in a release from the two societies, the film was taken by one Nevil Maskelyne, a British magician, card sharp, levitator and more turned pioneering filmmaker and astronomer.

The eclipse was captured during an expedition to North Carolina with the British Astronomical Association.  As the release explained, at the time magic, the paranormal and science often fit comfortably together, and the emerging film industry was a tool for all and an instigator of invention.

“It was not an easy feat to film,” the release reports. “Maskelyne had to make a special telescopic adapter for his camera to capture the event. ”

The North Carolina expedition was Maskelyne’s second attempt to film a solar eclipse, but the only one to have survived — though it was also considered lost for decades.  He also had traveled to India in 1898 to photograph the phenomenon and apparently succeeded, though his film can was said to be stolen on the way home.

 

Light curve of star as an exoplanet transits between it and an observing telescope.

 

Compelling on its own, the footage also conveniently provides an exaggerated and instructive example of the primary technique now used to discover distant exoplanets: the “transit” method invented a century after Maskelyne filmed his eclipse.

But unlike what occurs a full solar eclipse,  when the moon blots out the sun as viewed from Earth,  the transit method measures the light from a host star to determine whether it dips ever so slightly — a sign that a planet is blocking some of the star’s light.

There are, of course, no total eclipses from transiting exoplanets because the planets are so much smaller than the suns.  But you get the idea.

You perhaps also get the idea that there has long been a certain showmanship in the display of astronomical wonders.  Space agencies certainly understand that and — with some turning of the nobs to make astronomical phenomenon appear in ways our eyes can take them in most dramatically  — have created some of the most majestic and magical images of our times.… Read more

The Message of Really, Really Extreme Life

Hydrothermal system at Ethiopia’s Danakil Depression, where uniquely extreme life has been found in salt chimneys and surrounding water. The yellow deposits are a variety of sulphates and the red areas are deposits of iron oxides. Copper salts color the water green. (Felipe Gomez/Europlanet 2020 RI)

Ethiopia’s Dallol volcano and hot springs have created an environment about as hostile to life as can be imagined.

Temperatures in the supersaturated water reach more than 200 degrees F (94 C) and are reported to approach pure acidity, with an extraordinarily low pH of  0.25.  The environment is also highly salty, with salt chimneys common.

Yet researchers have just reported finding ultra-small bacteria living in one of the acidic, super-hot salt chimneys.  The bacteria are tiny — up to 20 times smaller than the average bacteria — but they are alive and in their own way thriving.

In the world of extremophiles, these nanohaloarchaeles order bacteria are certainly on the very edge of comprehension.  But much the same can be said of organisms that can withstand massive doses of radiation, that survive deep below the Earth’s surface with no hint of life support from the sun and its creations, that keep alive deep in glacier ice and even floating high in the atmosphere.  And as we know, spacecraft have to be well sterilized because bacteria (in hibernation) aboard can survive the trip to the moon or Mars.

Not life it is generally understood.  But the myriad extremophiles found around the globe in recent decades have brought home the reality that we really don’t know where and how life can survive;  indeed, these extremophiles often need their conditions to be super-severe to succeed.

And that’s what makes them so important for the search for life beyond Earth.  They are proof of concept that some life may well need planetary and atmospheric conditions that would have been considered utterly uninhabitable not long ago.

 

Montage from the Dallol site: (A) the sampling site, (B) the small chimneys (temperature of water 90 ºC. (C) D9 sample from a small chimney in (A). (D-L) Scanning Electron Microscope and (M-O) Scanning Transmission Electron Microscope images of sample D9 showing the morphologies of ultra-small microorganisms entombed in the mineral layers. (Gomez et al/Europlanet 2020 Research Infrastructure)

The unusual and extreme life and geochemistry of Dallol has been studied by a team led by Felipe Gómez from Astrobiology Center in Spain.… Read more

Starting Life on Another Planet

Inside the planet simulator at McMaster University
A look inside the planet simulator in the Origins of Life laboratory at McMaster University. Within this chamber, the origins of life can be explored on different worlds (McMaster University).

Have you ever wondered if you could kick-start life on another planet? In the Origins of Life laboratory at McMaster University in Canada, there is a machine that allows you to try this very task.

Exactly how life began on the Earth remains heavily debated, but one of the most famous ideas was proposed by Charles Darwin in a letter to a friend in 1871:

“But if (and oh what a big if) we could conceive in some warm little pond with all sorts of ammonia and phosphoric salts…” Darwin began.

In contrast to the vast ocean, a pond would allow simple organic molecules to be concentrated and increase the probability of reactions that would form chains of longer molecules such as RNA; a single-stranded version of DNA that is thought to have been used for genetic information by the earliest forms of life.

warm little pond
Did life begin in warm little ponds such as these? (Katharine Sutliff / Science).

It is highly likely that such warm little ponds would have the necessary ingredients to build such complex molecules. Experiments performed by Stanley Miller and Harold Urey in the 1950s demonstrated that water containing just the basic molecules of methane, ammonia and hydrogen would react to form a wide range of simple organics. Meteorites have also been found to contain similar molecules, proposing an alternative way of populating pools of water on the early Earth.

These ponds should therefore contain plenty of simple organics such as nucleotides, which stack together to form RNA. However, this stacking step turns out to be tricky.

“Anywhere where you have stagnant water and take sample, you will find organic molecules,” explains Maikel Rheinstädter, associate director of McMaster’s Origins Institute. “But you only find the building blocks, not the longer chains. Obviously, something is missing.”

In pond water, molecules are free to move around and potentially meet to initiate a reaction. The problem is that nucleotides carry a negative charge which repels the molecules from one another. While their motion is unconstrained, the nucleotides will therefore not approach close enough to react and form a longer molecule.

The solution is to dry out the pond.

As winter turned to summer on our young planet, shallow pools would have evaporated to leave the molecules suspended in the water lying on the muddy clay bottom.… Read more

Ancient Mars Water. Ever More of It, and Flowing Ever Longer on the Surface

A photo of a preserved river channel on Mars with color overlaid to show different elevations (blue is low, yellow is high).
(Courtesy of NASA/JPL/Univ. Arizona/Univ. Chicago)

 

Rather like a swollen river overflowing its banks, the story of water on Mars keeps on rising and spreading in quite unpredictable ways.

While the planet is now inarguable parched — though with lots of polar and subsurface ice and, perhaps, some seasonal surface trickles — data from the Curiosity rover, the Mars Reconnaissance Orbiter and other missions have proven quite reliably that the planet was once much wetter and warmer.  But how much wetter, and for how long,  remains of subject of hot debate.

On one side, Mars climate modelers have struggled to find mechanisms to keep the planet wetter and warmer for more than it’s earliest period — perhaps 500 million years.  Their projections flow from the seemingly established conclusion that Mars lost much of its atmosphere by 3.5 billion years ago, and without that protection warmer and wetter appear to be impossible.

But the morphology of the planet, the gorges, the fossil lakes, the riverbeds and deltas that are visible  because of 21st century technology and missions,  appears to tell a different and more wide-ranging story of Mars water.

 

Mudstone at the “Kimberley” formation on Mars taken by NASA’s Curiosity rover. The strata in the foreground dip towards the base of Mount Sharp, indicating the ancient depression that existed before the larger bulk of the mountain formed.
Credit:NASA/JPL-Caltech/MSSS

And now, in one of the most expansive interpretations of the Martian water story, University of Chicago planetary scientist and Mars expert Edwin Kite and colleagues report in a Science Advances paper that the planet not only once had many, many lakes and rivers, but that they were filled as part of a water cycle involving precipitation, rather than primarily through the sporadic melting of primordial ice as a result of incoming meteorites or other astrophysical events.

What’s more, they write, the rivers continued to sporadically flow well past the time when the Martian surface has been assumed to be dead dry.

The era when Mars has been most often described as going from wet-to-dry is around 3.5 billion years ago, but their interpretation of when precipitation-filled rivers stopped running is about 3 billion years ago.  In other words, Kite’s team now says the rivers ran — often quite actively — for more than one billion years.… Read more

A New and Revelatory Window Into Evolution on Earth

A Leanchoilia fossil from at the Qingjiang site in China. A very early arthropod  found with sharply defined appendages is an arthropod and  one of the prime examples of early Cambrian life (D Fu et al., Science 363:1338 (2019)

Virtually every definition of the word “life” includes the capability to undergo Darwinian evolution as a necessary characteristic.  This is true of life on Earth and of thinking about what would constitute life beyond Earth.  If it can’t change, the thinking goes, then it cannot be truly alive.

In addition, evolutionary selection and change occurs within the context of broad planetary systems — the chemical makeup of the atmosphere, the climactic conditions, the geochemistry and more.  If an environment is changing, then the lifeforms that can best adapt to the new conditions are the ones that will survive and prosper.

So evolution is very much part of the landscape that Many Worlds explores — the search for life beyond Earth and effort to understand how life emerged on Earth.  Evolution happens in the context of broad conditions on Earth (and perhaps elsewhere), and finding potential life elsewhere involves understanding the conditions on distant planets and determining if they are compatible with life.

This all came to mind as I read about the discovery of a remarkable collection of fossils alongside a river in China, fossils of soft-bodied creatures that lived a half billion years ago in the later phase of what is termed the the Cambrian explosion.  They are of being compared already with the iconic “Burgess Shale” fossil find in Canada of decades ago, and may well shed equally revelatory light on a crucial time in the evolution of life on Earth.

Artist rendering of Qingjiang life showing characteristics of different early Cambrian taxonomical groups.  More than 50 percent had never been identified before. (ZH Yao and DJ Fu)

The new discovery is reported in the journal Science in a paper authored by Dongjing Fu and a team largely from the Northwest University in Xi’an.  The paper reports on a zoo of Cambrian-era creatures, with more than half of them never identified before in the rock record.

The animals are soft-bodied — making it all the more remarkable that they were preserved — and some bear little resemblance to anything that followed.   Like the Burgess Shale fossils, the Qingjiang discovery is of an entire ecosystem that largely disappeared as more fit (and predatory) animals emerged.… Read more

How Creatures End Up Miles Below the Surface of Earth, and Maybe Mars Too

Poikilolaimus oxycercus is a microscopic nematode, or roundworm, found alive and well more than a mile below the surface in South Africa, where its ancestors had lived for hundreds or thousands of years. (Gaetan Borgonie)

 

When scientists speculate about possible life on Mars, they generally speak of microbial or other simple creatures living deep below the irradiated and desiccated surface.  While Mars long ago had a substantial period that was wetter and warmer when it also had a far more protective atmosphere,  the surface now is considered to be lethal.

But the suggestion that some potential early Martian life could have migrated into the more protected depths is often discussed as a plausible, if at this point untestable possibility.  In this scenario, some of that primitive subsurface life might even have survived the eons in their buried, and protected, environments.

This thinking has gotten some support in the past decade with the discovery of bacteria and nematodes (roundworms) found as far down as three miles below the surface of South Africa, in water dated as being many thousands or millions years old.  The lifeforms have been discovered by a team that has regularly gone down into the nation’s super-hot gold and platinum mines to search for life coming out of boreholes in the rock face of deep mine tunnels.

 

Borgonie setting up a water collector for a borehole at the Driefontein mine in the Witwatersrand Basin  of South Africa.  He said he stopped counting his journeys into the deep mines at 50, but that the number now is much higher. (Courtesy of Borgonie)

Now a  new paper describes not only the discovery of additional deep subsurface life, but also tries to explain how the distant ancestors of the worms and bacteria and algae might have gotten there. 

Their conclusion:  many were pulled down when fractures opened in the aftermath of earthquakes and other seismic events.  While many lifeforms were swept down, only a small percentage were able to adapt, evolve and thus survive.

The is how Gaetan Borgonie, lead author of the paper in Scientific Reports, explained it to me via email:

“After the discovery of multicellular animals in the deep subsurface up to 3.8 km (2.5 miles) in South Africa everyone was baffled and asked the question how did they get that deep? This question more or less haunted us for more than a decade as we were unable to get our head around it.Read more

All About Emergence

A swarm of birds act as an emergent whole as opposed to a collection of individual birds. The workings of swarms have been fruitfully studied by artificial life scientists, who look for abstracted insights into life via computers and other techniques. (Walerian Walawski)

 

If there was a simple meaning of the often-used scientific term “emergence,” then 100-plus scientists wouldn’t have spent four days presenting, debating and not infrequently disagreeing about what it was.

But as last month’s organizers of the Earth-Life Science Institute’s “Comparative Emergence” symposium in Tokyo frequently reminded the participants, those debates and disputes are perfectly fine and to be expected given the very long history and fungibility of the concept.

At the same time, ELSI leaders also clearly thought that the term can have resonance and importance in many domains of science, and that’s why they wanted practitioners to be exposed more deeply to its meanings and powers.

Emergence is a concept commonly used in origins of life research, in complexity and artificial life science; less commonly in chemistry, biology, social and planetary sciences; and — originally – in philosophy. And in the 21st century, it is making a significant comeback as a way to think about many phenomena and processes in the world.

So what is “emergence?” Most simply, it describes the ubiquitous and hugely varied mechanisms by which simple components in nature (or in the virtual or philosophical world) achieve more complexity, and in the process become greater than the sum of all those original parts.

The result is generally novel, often surprising, and sometimes most puzzling – especially since emergent phenomena involve self-organization by the more complex whole.

Think of a collection of ants or bees and how they join leaderless by the many thousands to make something – a beehive, an ant colony – that is entirely different from the individual creatures.

 

The Eagle nebula is an intense region of star formation, an emergent phenomenon
that clearly creates something novel out of simpler parts. (European Space Observatory.)

Think of the combination of hydrogen and oxygen gases which make liquid water. Think of the folding of proteins that makes genetic information transfer possible. Think of the processes by which bits of cosmic dust clump and clump and clump millions of times over and in time become a planetesimal or perhaps a planet. Think of how the firing of the billions of neurons in your brain results in consciousness.Read more

The Moon-Forming Impact And Its Gifts

 

Rice University petrologists have found Earth most likely received the bulk of its carbon, nitrogen and other life-essential volatile elements from the planetary collision that created the moon more than 4.4 billion years ago. (Rice University)

 

The question of how life-essential elements such as carbon, nitrogen and sulfur came to our planet has been long debated and is a clearly important and slippery scientific subject.

Did these volatile elements accrete onto the proto-Earth from the sun’s planetary disk as the planet was being formed?  Did they arrive substantially later via meteorite or comet?  Or was it the cataclysmic moon-forming impact of the proto-Earth and another Mars-sized planet that brought in those essential elements?

Piecing this story together is definitely challenging,  but now there is vigorous support for one hypothesis — that the giant impact brought us the elements would later be used to enable life.

Based on high pressure-temperature experiments, modeling and simulations, a team at Rice University’s Department of Earth, Environmental and Planetary Sciences makes that case in Science Advances for the central role of the proto-planet called Theia.

“From the study of primitive meteorites, scientists have long known that Earth and other rocky planets in the inner solar system are volatile-depleted,” said study co-author Rajdeep Dasgupta. “But the timing and mechanism of volatile delivery has been hotly debated. Ours is the first scenario that can explain the timing and delivery in a way that is consistent with all of the geochemical evidence.”

“What we are saying is that the impactor definitely brought the majority supply of life-essential elements that we see at the mantle and surface today,” Dasgupta wrote in an email.

 

A schematic depicting the formation of a Mars-sized planet (left) and its differentiation into a body with a metallic core and an overlying silicate reservoir. The sulfur-rich core expels carbon, producing silicate with a high carbon to nitrogen ratio. The moon-forming collision of such a planet with the growing Earth (right) can explain Earth’s abundance of both water and major life-essential elements like carbon, nitrogen and sulfur, as well as the geochemical similarity between Earth and the moon. (Rajdeep Dasgupta; background photo of the Milky Way galaxy is by Deepayan Mukhopadhyay)

 

Some of their conclusions are based on the finding of a similarity between the isotopic compositions of nitrogen and hydrogen in lunar glasses and in the bulk silicate portions of the Earth. Read more

« Older posts

© 2019 Many Worlds

Theme by Anders NorenUp ↑