Category: NExSS (page 1 of 2)

The Moon-Forming Impact And Its Gifts

 

Rice University petrologists have found Earth most likely received the bulk of its carbon, nitrogen and other life-essential volatile elements from the planetary collision that created the moon more than 4.4 billion years ago. (Rice University)

 

The question of how life-essential elements such as carbon, nitrogen and sulfur came to our planet has been long debated and is a clearly important and slippery scientific subject.

Did these volatile elements accrete onto the proto-Earth from the sun’s planetary disk as the planet was being formed?  Did they arrive substantially later via meteorite or comet?  Or was it the cataclysmic moon-forming impact of the proto-Earth and another Mars-sized planet that brought in those essential elements?

Piecing this story together is definitely challenging,  but now there is vigorous support for one hypothesis — that the giant impact brought us the elements would later be used to enable life.

Based on high pressure-temperature experiments, modeling and simulations, a team at Rice University’s Department of Earth, Environmental and Planetary Sciences makes that case in Science Advances for the central role of the proto-planet called Theia.

“From the study of primitive meteorites, scientists have long known that Earth and other rocky planets in the inner solar system are volatile-depleted,” said study co-author Rajdeep Dasgupta. “But the timing and mechanism of volatile delivery has been hotly debated. Ours is the first scenario that can explain the timing and delivery in a way that is consistent with all of the geochemical evidence.”

“What we are saying is that the impactor definitely brought the majority supply of life-essential elements that we see at the mantle and surface today,” Dasgupta wrote in an email.

 

A schematic depicting the formation of a Mars-sized planet (left) and its differentiation into a body with a metallic core and an overlying silicate reservoir. The sulfur-rich core expels carbon, producing silicate with a high carbon to nitrogen ratio. The moon-forming collision of such a planet with the growing Earth (right) can explain Earth’s abundance of both water and major life-essential elements like carbon, nitrogen and sulfur, as well as the geochemical similarity between Earth and the moon. (Rajdeep Dasgupta; background photo of the Milky Way galaxy is by Deepayan Mukhopadhyay)

 

Some of their conclusions are based on the finding of a similarity between the isotopic compositions of nitrogen and hydrogen in lunar glasses and in the bulk silicate portions of the Earth. Read more

The Kepler Space Telescope Mission Is Ending But Its Legacy Will Keep Growing.

An illustration of the Kepler Space Telescope, which is on its very last legs.  As of October 2018, the planet-hunting spacecraft has been in space for nearly a decade. (NASA via AP)

 

The Kepler Space Telescope is dead.  Long live the Kepler.

NASA officials announced on Tuesday that the pioneering exoplanet survey telescope — which had led to the identification of almost 2,700 exoplanets — had finally reached its end, having essentially run out of fuel.  This is after nine years of observing, after a malfunctioning steering system required a complex fix and change of plants, and after the hydrazine fuel levels reached empty.

While the sheer number of exoplanets discovered is impressive the telescope did substantially more:  it proved once and for all that the galaxy is filled with planets orbiting distant stars.  Before Kepler this was speculated, but now it is firmly established thanks to the Kepler run.

It also provided data for thousands of papers exploring the logic and characteristics of exoplanets.  And that’s why the Kepler will indeed live long in the world of space science.

“As NASA’s first planet-hunting mission, Kepler has wildly exceeded all our expectations and paved the way for our exploration and search for life in the solar system and beyond,” said Thomas Zurbuchen, associate administrator of NASA’s Science Mission Directorate in Washington.

“Not only did it show us how many planets could be out there, it sparked an entirely new and robust field of research that has taken the science community by storm. Its discoveries have shed a new light on our place in the universe, and illuminated the tantalizing mysteries and possibilities among the stars.”

 

 


The Kepler Space Telescope was focused on hunting for planets in this patch of the Milky Way. After two of its four spinning reaction wheels failed, it could no longer remain steady enough to stare that those distant stars but was reconfigured to look elsewhere and at a different angle for the K2 mission. (Carter Roberts/NASA)

 

Kepler was initially the unlikely brainchild of William Borucki, its founding principal investigator who is now retired from NASA’s Ames Research Center in California’s Silicon Valley.

When he began thinking of designing and proposing a space telescope that could potentially tell us how common distant exoplanets were — and especially smaller terrestrial exoplanets like Earth – the science of extra solar planets was at a very different stage.… Read more

A New Frontier for Exoplanet Hunting

The spectrum from the newly-assembled EXtreme PREcision Spectrometer (EXPRES)  shines on Yale astronomy professor Debra Fischer, who is principal investigator of the project. The stated goal of EXPRES is to find many Earth-size planets via the radial velocity method — something that has never been done. (Ryan Blackman/Yale)

 

The first exoplanets were all found using the radial velocity method of measuring the “wobble” of a star — movement caused by the gravitational pull of an orbiting planet.

Radial velocity has been great for detecting large exoplanets relatively close to our solar system, for assessing their mass and for finding out how long it takes for the planet to orbit its host star.

But so far the technique has not been able to identify and confirm many Earth-sized planets, a primary goal of much planet hunting.  The wobble caused by the presence of a planet that size has been too faint to be detected by current radial velocity instruments and techniques.

However, a new generation of instruments is coming on line with the goal of bringing the radial velocity technique into the small planet search.  To do that, the new instruments, together with their telescopes. must be able to detect a sun wobble of 10 to 20 centimeters per second.  That’s quite an improvement on the current detection limit of about one meter per second.

At least three of these ultra high precision spectrographs (or sometimes called spectrometers) are now being developed or deployed.  The European Southern Observatory’s ESPRESSO instrument has begun work in Chile; Pennsylvania State University’s NEID spectrograph (with NASA funding) is in development for installation at the Kitt Peak National Observatory in Arizona; and the just-deployed EXPRES spectrograph put together by a team led by Yale University astronomers (with National Science Foundation support) is in place at the Lowell Observatory outside of Flagstaff, Arizona.

The principal investigator of EXPRES, Debra Fischer, attended the recent University of Cambridge Exoplanets2 conference with some of her team, and there I had the opportunity to talk with them. We discussed the decade-long history of the instrument, how and why Fischer thinks it can break that 1-meter-per-second barrier, and what it took to get it attached and working.

 

This animation shows how astronomers use very precise spectrographs to find exoplanets. As the planet orbits its gravitational pull causes the parent star to move back and forth. This tiny radial motion shifts the observed spectrum of the star by a correspondingly small amount because of the Doppler shift.Read more

False Positives, False Negatives; The World of Distant Biosignatures Attracts and Confounds

This artist’s illustration shows two Earth-sized planets, TRAPPIST-1b and TRAPPIST-1c, passing in front of their parent red dwarf star, which is much smaller and cooler than our sun. NASA’s Hubble Space Telescope looked for signs of atmospheres around these planets. (NASA/ESA/STScI/J. de Wit, MIT)

What observations, or groups of observations, would tell exoplanet scientists that life might be present on a particular distant planet?

The most often discussed biosignature is oxygen, the product of life on Earth.  But while oxygen remains central to the search for biosignatures afar, there are some serious problems with relying on that molecule.

It can, for one, be produced without biology, although on Earth biology is the major source.  Conditions on other planets, however, might be different, producing lots of oxygen without life.

And then there’s the troubling reality that for most of the time there has been life on Earth, there would not have been enough oxygen produced to register as a biosignature.  So oxygen brings with it the danger of both a false positive and a false negative.

Wading through the long list of potential other biosignatures is rather like walking along a very wet path and having your boots regularly pulled off as they get captured by the mud.  Many possibilities can be put forward, but all seem to contain absolutely confounding problems.

With this reality in mind, a group of several dozen very interdisciplinary scientists came together more than a year ago in an effort to catalogue the many possible biosignatures that have been put forward and then to describe the pros and the cons of each.

“We believe this kind of effort is essential and needs to be done now,” said Edward Schwieterman, an astronomy and astrobiology researcher at the University of California, Riverside (UCR).

“Not because we have the technology now to identify these possible biosignatures light years away, but because the space and ground-based telescopes of the future need to be designed so they can identify them. ”

“It’s part of what may turn out to be a very long road to learning whether or not we are alone in the universe”.

 

Artistic representations of some of the exoplanets detected so far with the greatest potential to support liquid surface water, based on their size and orbit.  All of them are larger than Earth and their composition and habitability remains unclear. They are ranked here from closest to farthest from Earth. 

Read more

Putting Together a Community Strategy To Search for Extraterrestrial Life

I regret that the formatting of this column was askew earlier; I hope it didn’t make reading too difficult.  But now those problems are fixed.

The scientific search underway for life beyond Earth requires input from many disciplines and fields. Strategies forward have to hear and take in what scientists in those many fields have to say. (NASA)

Behind the front page space science discoveries that tell us about the intricacies and wonders of our world are generally years of technical and intellectual development, years of planning and refining, years of problem-defining and problem-solving.  And before all this, there also years of brainstorming, analysis and strategizing about which science goals should have the highest priorities and which might be most attainable.

That latter process is underway now in regarding the search for life in the solar system and beyond, with numerous teams of scientists tackling specific areas of interest and concern and turning their group discussions into white papers.  In this case, the white papers will then go on to the National Academy of Sciences for a blue-ribbon panel review and ultimately recommendations on which subjects are exciting and mature enough for inclusion in a decadal survey and possible funding.

This is a generally little-known part of the process that results in discoveries, but scientists certainly understand how they are essential.  That’s why hundreds of scientists contribute their ideas and time — often unpaid — to help put together these foundational documents.

With its call for extraterrestrial habitability white papers, the NAS got more than 20 diverse and often deeply thought out offerings.  The papers will be studied now by an ad hoc, blue ribbon committee of scientists selected by the NAS, which will have the first of two public meetings in Irvine, Calif. on Jan. 16-18.

Shawn Domagal-Goldman, a leader of many NASA study projects and a astrobiologist at NASA’s Goddard Space Fight Center. (NASA)

Then their recommendations go up further to the decadal survey teams that will set formal NASA priorities for the field of astronomy and astrophysics and planetary science.  This community-based process that has worked well for many scientific disciplines since they began in the late 1950s.

I’m particularly familiar with two of these white paper processes — one produced at the Earth-Life Science Institute (ELSI) in Tokyo and the other with NASA’s Nexus for Exoplanet System Science (NExSS.)  What they have to say is most interesting.Read more

A New Way to Find Signals of Habitable Exoplanets?

Scientists propose a new and more indirect way of determining whether an exoplanet has a good, bad or unknowable chance of being habitable.  (NASA’s Goddard Space Flight Center/Mary Pat Hrybyk)

The search for biosignatures in the atmospheres of distant exoplanets is extremely difficult and time-consuming work.  The telescopes that can potentially take the measurements required are few and more will come only slowly.  And for the current and next generation of observatories, staring at a single exoplanet long enough to get a measurement of the compounds in its atmosphere will be a time-consuming and expensive process — and thus a relatively infrequent one.

As a way to potentially improve the chances of finding habitable conditions on those exoplanets that are observed, a new approach has been proposed by a group of NASA scientists.

The novel technique takes advantage of the frequent stellar storms emanating from cool, young dwarf stars. These storms throw huge clouds of stellar material and radiation into space – traveling near the speed of light — and the high energy particles then interact with exoplanet atmospheres and produce chemical biosignatures that can be detected.

The study, titled “Atmospheric Beacons of Life from Exoplanets Around G and K Stars“, recently appeared in Nature Scientific Reports

“We’re in search of molecules formed from fundamental prerequisites to life — specifically molecular nitrogen, which is 78 percent of our atmosphere,” said Airapetian, who is a solar scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and at American University in Washington, D.C. “These are basic molecules that are biologically friendly and have strong infrared emitting power, increasing our chance of detecting them.”

The thin gauzy rim of the planet in foreground is an illustration of its atmosphere. (NASA’s Goddard Space Flight Center)

So this technique, called a search for  “Beacons of Life,” would not detect signs of life per se, but would detect secondary or tertiary signals that would, in effect, tell observers to “look here.”

The scientific logic is as follows:

When high-energy particles from a stellar storm reach an exoplanet, they break the nitrogen, oxygen and water molecules that may be in the atmosphere into their individual components.

Water molecules become hydroxyl — one atom each of oxygen and hydrogen, bound together. This sparks a cascade of chemical reactions that ultimately produce what the scientists call the atmospheric beacons of hydroxyl, more molecular oxygen, and nitric oxide.… Read more

Red Dwarf Stars and the Planets Around Them

Artist rendering of a red dwarf or M star, with three exoplanets orbiting. About 75 percent of all stars in the sky are the cooler, smaller red dwarfs. (NASA)

It’s tempting to look for habitable planets around red dwarf stars, which put out far less luminosity and so are less blinding.  But is it wise?

That question has been near the top of the list for many exoplanet scientists, especially those involved in the search for habitable worlds.

Red dwarfs are plentiful (about three-quarters of all the stars out there) and the planets orbiting them are easier to observe because the stars are so small compared to our Sun and so an Earth-sized planet blocks a greater fraction of starlight.  Because planets orbiting red dwarfs are much closer in to their host stars, the observing geometry favors detecting more transits.

A potentially rich target, but with some drawbacks that have become better understood in recent years.  Not only are most planets orbiting these red dwarf stars tidally locked, with one side always facing the sun and the other in darkness, but the life history of red dwarfs is problematic.  They start out with powerful flares that many scientists say would sterilize the close-in planets forever.

Also, they are theorized to be prone to losing whatever water remains even if the stellar flares don’t do it. Originally, it was thought that this would happen because of a “runaway greenhouse,” where a warming planet under a brightening star would evaporate enough water from its oceans to create a thick blanket of H2O vapor at high altitudes and block the escape of radiation, leading to further warming and the eventual loss of all the planet’s water.

The parching CO2 greenhouse of a planet like Venus may be the result of that.  Later it was realized that on many planets, another mechanism called the “moist greenhouse” might create a similar thick blanket of water vapor at high altitudes long before a planet ever got to the runaway greenhouse stage.

Finally now has come some better news about red dwarf exoplanets.  Using 3-D models that characterize atmospheres going back, forward and to the sides, researchers found atmospheric conditions quite different from those predicted by 1-D models that capture changes only going from the surface straight up.

One paper found that using some pretty simple observations and calculations, scientists could determine the bottom line likelihood of whether or not the planet would be undone by a moist greenhouse effect. … Read more

The Very Influential Natalie Batalha

Natalie Batalha, project scientist for the Kepler mission and a leader of NASA’s NExSS initiative on exoplanets, was just selected as one of Time Magazine’s 100 most influential people in the world. (NASA, TIME Magazine.)

I’d like to make a slight detour and talk not about the science of exoplanets and astrobiology, but rather a particular exoplanet scientist who I’ve had the pleasure to work with.

The scientist is Natalie Batalha, who has been lead scientist for NASA’s landmark Kepler Space Telescope mission since soon after it launched in 2009, has serves on numerous top NASA panels and boards, and who is one of the scientists who guides the direction of this Many Worlds column.

Last week, Batalha was named by TIME Magazine as one of the 100 most influential people in the world. This is a subjective (non-scientific) calculation for sure, but it nonetheless seems appropriate to me and to doubtless many others.

Batalha and the Kepler team have identified more than 2500 exoplanets in one small section of the distant sky, with several thousand more candidates awaiting confirmation.  Their work has once and for all nailed the fact that there are billions and billions of exoplanets out there.

“NASA is incredibly proud of Natalie,” said Paul Hertz, astrophysics division director at NASA headquarters, after the Time selection was announced.

“Her leadership on the Kepler mission and the study of exoplanets is helping to shape the quest to discover habitable exoplanets and search for life beyond the solar system. It’s wonderful to see her recognized for the influence she has had on the world – and on the way we see ourselves in the universe.”

And William Borucki, who had the initial idea for the Kepler mission and worked for decades to get it approved and then to manage it, had this to say about Batalha:

“She has made major contributions to the Kepler Mission throughout its development and operation. Natalie’s collaborative leadership style, and expert knowledge of the population of exoplanets in the galaxy, will provide guidance for the development of successor missions that will tell us more about the habitability of the planets orbiting nearby stars.”

Batalha has led the science mission of the Kepler Space Telescope since it launched in 2009. (NASA)

As a sign of the perceived importance of exoplanet research, two of the other TIME influential 100 are discoverers of specific new worlds.  They are Guillem Anglada-Escudé (who led a team that detected a planet orbiting Proxima Centauri) and Michael Gillon (whose team identified the potentially habitable planets around the Trappist-1 system.)

But Batalha, and no doubt the other two scientists, stress that they are part of a team and that the work they do is inherently collaborative.… Read more

A Four Planet System in Orbit, Directly Imaged and Remarkable

Now on Facebook:  http://facebook.com/nexssmanyworlds/

The era of directly imaging exoplanets has only just begun, but the science and viewing pleasures to come are appealingly apparent.

This evocative movie of four planets more massive than Jupiter orbiting the young star HR 8799 is a composite of sorts, including images taken over seven years at the W.M. Keck observatory in Hawaii.

The movie clearly doesn’t show full orbits, which will take many more years to collect. The closest-in planet circles the star in around 40 years; the furthest takes more than 400 years.

But as described by Jason Wang,  an astronomy graduate student at the University of California, Berkeley, researchers think that the four planets may well be in resonance with each other.

In this case it’s a one-two-four-eight resonance, meaning that each planet has an orbital period in nearly precise ratio with the others in the system.

The black circle in the center of the image is part of the observing and analyzing effort to block the blinding light of the star, and thus make the planets visible.

The images were initially captured by a team of astronomers including Christian Marois of the National Research Council of Canada’s Herzberg Institute of Astrophysics, who analyzed the data.  The movie animation was put together by Wang, who is part of the Berkeley arm of the Nexus for Exoplanet System Science (NExSS), a NASA-sponsored group formed to encourage interdisciplinary exoplanet science.

The star HR 8799 has already played a pioneering role in the evolution of direct imaging of exoplanets.  In 2008, the Marois group announced discovery of three of the four HR 8799 planets using direct imaging for the first time. On the same day that a different team announced the direct imaging of a planet orbiting the star Fomalhaut.

 


This false-color composite image traces the motion of the planet Fomalhaut b, a world captured by direct imaging. (NASA, ESA, and P. Kalas, University of California, Berkeley and SETI Institute)

HR 8799 is 129 light years away in the constellation of Pegasus.  By coincidence, it is quite close to the star 51 Pegasi, where the first exoplanet was detected in 1995.  It is less than 60 million years old, Wang said, and is almost five times brighter than the sun.

Wang said that the animation is based on eight observations of the planets since 2009.  He then used a motion interpolation algorithm to draw the orbit between those points.… Read more

Proxima b Is Surely Not "Earth-like." But It’s A Research Magnet And Just May Be Habitable.

Simulated comparison of a sunset on Earth and Proxima b. The red-dwarf star Proxima Centauri appears almost three times bigger than the Sun in a redder and darker sky. Red-dwarf stars appear bigger in the sky than sun-like stars, even though they are smaller. This is because they are cooler and the planets have to be closer to them to maintain temperate conditions. The original photo of the beach was taken at Playa Puerto Nuevo in Vega Baja, Puerto Rico. Credit: PHL @ UPR Arecibo.

A simulated comparison of a sunset on Earth and Proxima b. The images sets out to show that the red-dwarf star Proxima Centauri appears almost three times bigger than our sun in a redder and darker sky. There is value in illustrating how conditions in different solar systems would change physical conditions on the planets, but there is a real danger that the message conveyed becomes the similarities between planets such as Earth and Proxima b.  At this point, there is no evidence that Proxima b is “Earth-like” at all. The original photo of the beach was taken at Playa Puerto Nuevo in Vega Baja, Puerto Rico. (PHL @ UPR Arecibo))

It is often discussed within the community of exoplanet scientists that a danger lies in the description of intriguing exoplanets as “Earth-like.”

Nothing discovered so far warrants the designation, which is pretty nebulous anyway.  Size and the planet’s distance from a host star are usually what earn it the title “Earth-like,” with its inescapable expectation of inherent habitability. But residing in a habitable zone is just the beginning; factors ranging from the make-up of the planet’s host star to the presence and content of an atmosphere and whether it has a magnetic field can be equally important.

The recent announcement of the detection of a planet orbiting Proxima Centauri, the closest star to our own, set off another round of excitement about an “Earth-like” planet.  It was generally not scientists who used that phrase — or if they did, it was in the context of certain “Earth-like” conditions.  But the term nonetheless became a kind of shorthand for signalling a major discovery that just might some day even yield a finding of extraterrestrial life.

Consider, however, what is actually known about Proxima b:

  • The planet, which has a minimum mass of 1.3 Earths and a maximum of many Earths, orbits a red dwarf star.  These are the most common class of star in the galaxy, and they put out considerably less luminosity than a star like our sun — about one-tenth of one percent of the power.
  • These less powerful red dwarf stars often have planets orbiting much closer to them than what’s found in solar systems like our own.   Proxima b, for instance, circles the star in 11.3 days.
  • A consequence of this proximity is that the planet is most likely tidally locked by the gravitational forces of the star — meaning that the planet does not rotate like Earth does but rather has a daytime and nighttime side like our moon. 
Read more
« Older posts

© 2019 Many Worlds

Theme by Anders NorenUp ↑