Category: Our Solar System (page 3 of 4)

Phobos and Deimos: Captured Asteroids or Cut From Ancient Mars?

Illustration of Mars with its two moons, Phobos and Deimos. (NASA/JPL-Caltech/Malin Space Science Systems/Texas A&M Univ.)

The global success rate for sending missions to land on the moons of Mars has hardly been impressive — coming in at zero out of three attempts.  They were all led by the Russian (or former Soviet) space agencies, in collaboration with organizations ranging from the Chinese and Bulgarian space agencies to the Paris Observatory and the U.S. Planetary Society.

Now the Japanese space agency JAXA has approved its own mission to Phobos and Deimos, scheduled to launch from the Tanegashima Space Center in September 2024.

The Martian Moons eXploration (MMX) spacecraft will arrive at Mars in August 2025 and spend the next three years exploring the two moons and the environment around Mars. During this time, the spacecraft will drop to the surface of one of the moons and collect a sample to bring back to Earth. Probe and sample are scheduled to return to Earth in the summer of 2029.

Mars takes its name from the god of war in ancient Greek and Roman mythology. The Greek god Ares became Mars in the Roman adaptation of the deities. Mars’s two moons are named for Phobos and Deimos; in legend the twin sons of Ares who personified fear and panic.

Today, what the moons together personify is a compelling mystery, one regarding how in reality they came to be.

Both Martian moons are small, with Phobos’s average diameter measuring 22.2km, while the even smaller Deimos has an average size of just 13km. This makes even Phobos’s surface area only comparable to that of Tokyo. Their diminutive proportions means that the moons resemble asteroids, with irregular structures due to their gravity being too weak to pull them into spheres.

This leads to the question that has inspired a long-running debate: Were Phobos and Deimos formed during an impact with Mars, or are they asteroids that have been captured by Mars’s gravity?

Phobos and Deimos, photographed by the Mars Reconnaissance Orbiter. (NASA/JPL)

Our own Moon is thought to have been created when a Mars-sized body slammed into the early Earth. Debris from the collision was thrown into the Earth’s orbit where is coalesced into our only natural satellite.

A similar scenario is possible for Phobos and Deimos. In the late stages of our solar system’s formation, giant impacts such as the one that struck the Earth were relatively common.… Read more

NASA Panel Supports Life-Detecting Lander for Europa; Updated

Artist conception of water vapor plumes coming from beneath the thick ice of Jupiter’s moon Europa. The plumes have not been definitively detected, but Hubble Space Telescope images make public earlier this month appear to show plume activity in an area where it was detected once before.  How will this finding affect decision-making about a potential NASA Europa lander mission? (NASA)

As I prepare for the Astrobiology Science Conference (Abscicon) next week in Arizona, I’m struck by how many speakers will be discussing Europa missions, Europa science, ocean worlds and habitability under ice.  NASA’s Europa Clipper mission to orbit that moon, scheduled for launch to the Jupiter system in the mid 2020s, explains part of the interest, but so too does the unsettled fate of the Europa lander concept.

The NASA Science Definition Team that studied the Europa lander project will both give a science talk at the conference and hold an afternoon-long science community meeting on their conclusions.  The team argued that landing on Europa holds enormous scientific promise, most especially in the search for life beyond Earth.

But since the Europa lander SDT wrote its report and took its conclusions public early this year, the landscape has changed substantially.  First, in March, the Trump Administration 2018 budget eliminated funding for the lander project.  More than half a billion dollars have been spent on Europa lander research and development, but the full project was considered to be too expensive by the White House.

Administration budget proposals and what ultimately become budget reality can be quite different, and as soon as the Europa lander was cancelled supporters in Congress pushed back.  Rep. John Culberson (R-Tex.) and chair of the House subcommittee that oversees the NASA budget, replied to the proposed cancellation by saying “NASA is a strategic national asset and I have no doubt NASA will receive sufficient funding to complete the most important missions identified by the science community, including seeking out life in the oceans of Europa.”

More recently, researchers announced additional detections of plumes of water vapor apparently coming out of Europa — plumes in the same location as a previous apparent detection.  The observing team said they were confident the difficult observation was indeed water vapor, but remained less than 100 percent certain.  (Unlike for the detection of a water plume on Saturn’s moon Enceladeus, which the Cassini spacecraft photographed, measured and flew through.)

So while suffering a serious blow in the budgeting process, the case for a Europa lander has gotten considerably stronger from a science and logistics perspective. 

Read more

Ocean Worlds: Enceladus Looks Increasingly Habitable, and Europa’s Ocean Under the Ice More Accessible to Sample

NASA’s Cassini spacecraft completed its deepest-ever dive through the icy plume of Enceladus on Oct. 28, 2015. (NASA/JPL-Caltech)

It wasn’t that long ago that Enceladus, one of 53 moons of Saturn, was viewed as a kind of ho-hum object of no great importance.  It was clearly frozen and situated in a magnetic field maelstrom caused by the giant planet nearby and those saturnine rings.

That view was significantly modified in 2005 when scientists first detected signs of the icy plumes coming out of the bottom of the planet.  What followed was the discovery of warm fractures (the tiger stripes) near the moon’s south pole, numerous flybys and fly-throughs with the spacecraft Cassini, and by 2015 the announcement that the moon had a global ocean under its ice.

Now the Enceladus story has taken another decisive turn with the announcement that measurements taken during Cassini’s final fly-through captured the presence of molecular hydrogen.

To planetary and Earth scientists, that particular hydrogen presence quite clearly means that the water shooting out from Enceladus is coming from an interaction between water and warmed rock minerals at the bottom of the moon’s ocean– and possibly from within hydrothermal vents.

These chimney-like hydrothermal vents at the bottom of our oceans — coupled with a chemical mixture of elements and compounds similar to what has been detected in the plumes — are known on Earth as prime breeding grounds for life.  One important reason why is that the hydrogen and hydrogen compounds produced in these settings are a source of energy, or food, for microbes.

A logical conclusion of these findings:  the odds that Enceladus harbors forms of simple life have increased significantly.

To be clear, this is no discovery of extraterrestrial life. But it is an important step in the astrobiological quest to find life beyond Earth.

“The key here is that Enceladus can produce fuel that could be used by biology,” said Mary Voytek, NASA’s senior scientist for astrobiology, referring to the detection of hydrogen.

 

This graphic illustrates how scientists on NASA’s Cassini mission think water interacts with rock at the bottom of the ocean of Saturn’s icy moon Enceladus, producing hydrogen gas (H2). It remains unclear whether the interactions are taking place in hydrothermal vents or more diffusely across the ocean. (NASA)

“So now on this moon we have many of the components associated with life — water, a source of energy and many of the important chemical building blocks. … Read more

What Scientists Expect to Learn From Cassini’s Upcoming Plunge Into Saturn

Saturn as imaged from above by Cassini last year. Over the next five months, the spacecraft will orbit closer and closer to the planet and will finally plunge into its atmosphere. (NASA)

Seldom has the planned end of a NASA mission brought so much expectation and scientific high drama.

The Cassini mission to Saturn has already been a huge success, sending back iconic images and breakthrough science of the planet and its system.  Included in the haul have been the discovery of plumes of water vapor spurting from the moon Encedalus and the detection of liquid methane seas on Titan.  But as members of the Cassini science team tell it, the end of the 13-year mission at Saturn may well be its most scientifically productive time.

Linda Spilker, Cassini project scientist at NASA’s Jet Propulsion Laboratory (JPL) put it this way: “Cassini will make some of its most extraordinary observations at the end of its long life.”

This news was first announced last week, but I thought it would be useful to go back to the story to learn more about what “extraordinary” science might be coming our way, with the help of Spilker and NASA headquarters Cassini program scientist Curt Niebur.

And the very up close encounters with Saturn’s rings and its upper atmosphere — where Cassini is expected to ultimately lose contact with Earth — certainly do offer a trove of scientific riches about the basic composition and workings of the planet, as well as the long-debated age and origin of the rings.  What’s more, everything we learn about Saturn will have implications for, and offer insights into, the vast menagerie of  gas giant exoplanets out there.

“The science potential here is just huge,” Niebur told me.  “I could easily conceive of a billion dollar mission for the science we’ll get from the grand finale alone.”

 

The Cassini spacecraft will make 22 increasingly tight orbits of Saturn before it disappears into the planet’s atmosphere in mid-September, as shown in this artist rendering.  (NASA/JPL-Caltech)

 

The 20-year, $3.26 billion Cassini mission, a collaboration of NASA, the European Space Agency and the Italian Space Agency,  is coming to an end because the spacecraft will soon run out of fuel.  The agency could have just waited for that moment and let the spacecraft drift off into space, but decided instead on the taking the big plunge.

This was considered a better choice not only because of those expected scientific returns, but also because letting the dead spacecraft drift meant that theoretically it could be pulled towards Titan or Enceladus — moons that researchers now believe just might support life.… Read more

NASA Panel Supports Life-Detecting Lander for Europa

Artist rendering of a potential life-detecting lander mission to Europa that would follow on the Europa Clipper orbiter mission that is scheduled to launch in the 2020s.. In the background is Jupiter. (NASA/JPL/Caltech)

It has been four long decades since NASA has sent an officially-designated life detection mission into space.  The confused results of the Viking missions to Mars in the mid 1970s were so controversial and contradictory that scientists — or the agency at least — concluded that the knowledge needed to convincingly search for extraterrestrial life wasn’t available yet.

But now, a panel of scientists and engineers brought together by NASA has studied a proposal to send a lander to Jupiter’s moon Europa and, among other tasks, return to the effort of life-detection.

In their recommendation, in fact, the NASA-appointed Science Definition Team said that the primary goal of the mission would be “to search for evidence of life on Europa.”

The other goals are to assess the habitability of Europa by directly analyzing material from the surface, and to characterize the surface and subsurface to support future robotic exploration of Europa and its ocean.

Scientists agree that the evidence is quite strong that Europa, which is slightly smaller than Earth’s
moon, has a global saltwater ocean beneath its deep ice crust, and that it contains twice as much water as exists on Earth.

For the ocean to be liquid there must be substantial sources of heat — from tidal heating based on the shape of its orbits, or from heat emanating from radioactive decay and entering the ocean through hydrothermal vents.  All could potentially provide an environment where life could emerge and survive.

Kevin Hand of the Jet Propulsion Laboratory is a specialist in icy worlds and is deputy project scientist for the Europa project.  He was one of the co-chairs of the Science Definition Team (SDT) and he said the group was ever mindful of the complicated history of the Viking missions.  He said that some people called Viking a “failure” because it did not clearly identify life, but he described that view as “entirely unscientific.”

“It would be misguided to set out to ‘find life’,” he told me.  “The real objective is to test an hypothesis – one we have that if you bring together the conditions for life as we know them, then they might come together and life can inhabit the environment.

“As far as we can tell, Europa has the water, the elements and the energy needed to create a habitable world. … Read more

Direct Imaging Earth and Moon from Mars

(NASA/ JPL-Caltech/ Univ. of Arizona)

Sometimes images arrive that make it clear that the space age is not a throw-away line, but a reality.

This one was taken by a satellite orbiting Mars, and it shows the Earth and the moon.  Kind of remarkable, given that the camera — the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter — was 127 million miles away

And HiRISE is not a far-seeing telescope, but rather a camera designed to look down on Mars from 160 to 200 miles away.  It’s job (among other tasks) is to image the terrain, measure the compounds and minerals below, and keep an eye on Mars dust storms, climate, and the downhill steaks that periodically appear on some inclines and may contain surface salty water.

The image is a composite image of Earth and its moon, combining the best Earth image with the best moon image from four sets of images acquired on Nov. 20, 2016 by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter.

Each was separately processed prior to combining them so that the moon is bright enough to see. The moon is much darker than Earth and would barely be visible at the same brightness scale as Earth. The combined view retains the correct sizes and positions of the two relative to each other.

This is how JPL described the details:

HiRISE takes images in three wavelength bands: infrared, red, and blue-green. These are displayed here as red, green, and blue, respectively. This is similar to Landsat images in which vegetation appears red. The reddish feature in the middle of the Earth image is Australia. Southeast Asia appears as the reddish area (due to vegetation) near the top; Antarctica is the bright blob at bottom-left. Other bright areas are clouds.

What I find especially intriguing about the image is that it is precisely the kind of “direct imaging” that the exoplanet community hopes to some day do with distant planets.  With this kind of imaging, scientists not only can detect the glints of water, the presence of land, the dynamics of clouds and climate, but they can also get better spectrographic measurements of what chemicals are present.

Some exoplanets are being painstakingly direct imaged, but the difficulty factor is high and the result is most likely one or two pixels.  And since the planets are orbiting stars that send out light that hides any exoplanets present, coronagraphs are needed inside the telescopes to block out the sun and its rays.… Read more

Curiosity Has Found The Element Boron On Mars. That’s More Important Than You Might Think

ChemCam target Catabola is a raised resistant calcium sulfate vein with the highest abundance of boron observed so far. The red outline shows the location of the ChemCam target remote micro images (inset). The remote micro images show the location of each individual ChemCam laser point (red crosshairs) and the B chemistry associated with each point (colored bars). The scale bar is 9.2 mm or about 0.36 inches. Credit JPL-Caltech/MSSS/LANL/CNES-IRAP/William Rapin

Using its laser technology, the Curiosity ChemCam instrument located the highest abundance of boron observed so far on this raised calcium sulfate vein. The red outline shows the location of the ChemCam target remote micro images (inset). The remote micro images show the location of each individual ChemCam laser point (red crosshairs) and the additional chemistry associated with each point (colored bars).  JPL-Caltech/MSSS/LANL/CNES-IRAP/William Rapin

For years, noted chemist and synthetic life researcher Steven Benner has talked about the necessary role of the element boron in the origin of life.

Without boron, he has found, many of the building blocks needed to form the earliest self-replicating ribonucleic acid (RNA) fall apart when they come into contact with water, which is nonetheless needed for the chemistry to succeed. Only in the presence of boron, Benner found and has long argued, can the formation of RNA and later DNA proceed.

Now, to the delight of Benner and many other scientists, the Curiosity team has found boron on Mars.  In fact, as Curiosity climbs the mountain at the center of Gale Crater, the presence of boron has become increasingly pronounced.

And to make the discovery all the more meaningful to Benner, the boron is being found in rock veins.  So it clearly was carried by water into the fractures, and was deposited there some 3.5 billion years ago.

Combined with earlier detections of phosphates, magnesium, peridots, carbon and other essential elements in Gale Crater, Benner told me, “we have found on Mars an environment entirely consistent with a what we consider conducive for the origin of life.

“Is it likely that life arose?  I’d say yes…perhaps even, hell yes.  But it’s also true that an environment conducive to the formation of life isn’t necessarily one conducive to the long-term survival of life.”

The foreground of this scene from the Mastcam on NASA's Curiosity Mars rover shows purple-hued rocks near the rover's late-2016 location. The middle distance includes future destinations for the rover. Variations in color of the rocks hint at the diversity of their composition on lower Mount Sharp. Credits: NASA/JPL-Caltech/MSSS

The foreground of this scene from the Mastcam on NASA’s Curiosity Mars rover shows purplish rocks near the rover’s late-2016 location. The middle distance includes future destinations for the rover. Variations in color of the rocks hint at the diversity of their composition on lower Mount Sharp. NASA/JPL-Caltech/MSSS

Another factor in the Mars-as-habitable story from Benner’s view is that there has never been the kind of water world there that many believe existed on early Earth.

While satellites orbiting Mars and now Curiosity have made it abundantly clear that early Mars also had substantial water in the form of lakes, rivers, streams and perhaps an localized ocean, it was clearly never covered in water.… Read more

Waiting on Enceladus

NASA's Cassini spacecraft completed its deepest-ever dive through the icy plume of Enceladus on Oct. 28, 2015. Credits: NASA/JPL-Caltech

NASA’s Cassini spacecraft completed its deepest-ever dive through the icy plume of Enceladus on Oct. 28, 2015. (NASA/JPL-Caltech)

Of all the possible life-beyond-Earth questions hanging fire, few are quite so intriguing as those surrounding the now famous plumes of the moon Enceladus:  what telltale molecules are in the constantly escaping jets of water vapor, and what dynamics inside the moon are pushing them out?

Seldom, if ever before, have scientists been given such an opportunity to investigate the insides of a potentially habitable celestial body from the outside.

The Cassini mission to Saturn made its closest to the surface (and last) plume fly-through a year ago, taking measurements that the team initially said they would report on within a few weeks.

That was later updated by NASA to include this guidance:  Given the important astrobiology implications of these observations, the scientists caution that it will be several months before they are ready to present their detailed findings.

The reference to “important astrobiology implications” certainly could cover some incremental advance, but it does seem to at least hint of something more.

I recently contacted the Jet Propulsion Lab for an update on the fly-through results and learned that a paper has been submitted to the journal Nature and that it will hopefully be accepted and made public in the not-too-distant future.

All this sounds most interesting but not because of any secret finding of life — as some might infer from that official language.  Cassini does not have the capacity to make such a detection, and there is no indication at this point that identifiable byproducts of life are present in the plumes.

What is intriguing is that the fly-through was only 30 miles above the moon’s surface — the closest pass through a plume ever by Cassini — and so presumably its instruments produced some new and significant findings.

The scientists writing the paper could not, of course, discuss their findings before publication.  But Jonathan Lunine, a Cornell University planetary scientist and physicist on the Cassini mission with a longtime and deep interest in Enceladus, was comfortable discussing what is known about the moon and what Cassini (and future missions) still have to explain.

And thanks to that briefing, it became apparent that whatever new findings are coming, they will not make or break the case for the moon as a habitable place. Rather, they will essentially add to a strong case that has already been made.… Read more

Jupiter’s Stripes Run Deep, But Hopefully Juno’s Problems Do Not

Though on holiday, I wanted to share these images and a bit of the Juno at Jupiter news.

This composite image depicts Jupiter's cloud formations as seen through the eyes of Juno's microwave radiometer (MWR) instrument as compared to the top layer, a Cassini imaging science subsystem image of the planet. The MWR can see a couple of hundred miles into Jupiter's atmosphere with the instrument's largest antenna. The belts and bands visible on the surface are also visible in modified form in each layer below. Credit: NASA/JPL-Caltech/SwRI/GSFC

This composite image depicts Jupiter’s cloud formations as seen through the eyes of Juno’s microwave radiometer (MWR) instrument as compared to the top layer, a Cassini imaging science subsystem image of the planet. The MWR can see a couple of hundred miles into Jupiter’s atmosphere with the instrument’s largest antenna. The belts and bands visible on the surface are also visible in modified form in each layer below. (NASA/JPL-Caltech/SwRI/GSFC)

Because telescopes have never been able to see clearly down through the thick clouds of Jupiters– the ones that together form the planet’s glorious stripes– it has remained a mystery how deep they may be.

Based on the Juno spacecraft’s August pass, we now know via its microwave radiometer that the stripes reflect dynamics that occur deep into the planet.

Scott Bolton, leader of the Juno mission reported the team’s conclusions during a press conference at the 2016 meeting of the American Astronomical Society’s Division for Planetary Sciences.

“The structure of the zones and belts still exists deep down,” Bolton said.  “So whatever is making those colors, whatever is making those stripes, is still existing pretty far down into Jupiter. That came as a surprise to many of the scientists. We didn’t know if this was [just] skin-deep.”

The new images penetrate to depths of about 200 to 250 miles below the surface cloud layer, Bolton said. While the bands seen on the cloud tops are not identical to the bands identified further down, there is a strong resemblance. “They’re evolving. They’re not staying the same,” Bolton said.

The findings have intriguing implications for exoplanet research.  Bolton said that the hint at “the deep dynamics and the chemistry of Jupiter’s atmosphere. And this is the first time we’ve seen any giant planet atmosphere underneath its layers. So we’re learning about atmospheric dynamics at a very basic level.”

Outer jets and belts composed largely of ammonia and hydrogen sulfide gas can block study of the inner atmosphere. Winds blow the cloud regions in different directions. (NASA)

Outer jets and belts composed largely of ammonia and hydrogen sulfide gas can block study of the inner atmosphere. Winds blow the cloud regions in different directions. (NASA/JPL-Caltech)

These early Juno findings came as it was also reported that the spacecraft had two malfunction that caused it to go into safe mode, just as it was approaching Jupiter for an October 19 flyby.

Right now, Juno makes one orbit every 53 days. Juno was scheduled to fire its engines on Oct.… Read more

The Ancient Mars Water Story, Updated

Rendering of Gale Lake some 3.5 billion years ago, when Mars was warmer and much wetter. The Curiosity mission is finding that Gale Crater water-changed rock is everywhere.

Rendering of Gale Lake some 3.5 billion years ago, when Mars was warmer and much wetter. The Curiosity mission is finding that rocke in Gale Crater changed by water everywhere. (Evan Williams, with data from the Mars Reconnaissance Orbiter HIRISE project)

Before the Curiosity rover landed on Mars, NASA’s “follow the water”maxim had already delivered results that suggested a watery past and just maybe some water not far below the surface today that would periodically break through on sun-facing slopes.

While tantalizing — after all, the potential presence of liquid water on a exoplanet’s surface is central to concluding that it is, or once was, habitable — it was far from complete and never confirmed via essential ground-truthing.

Curiosity famously provided that confirmation early on with the discovery of pebbles that had clearly been shaped in the presence of flowing surface water, followed by the months in Yellowknife Bay which proved geologically, geochemically and morphologically the long-ago presence of substantial amounts of early Martian water.

Some of the earliest drilling was into mudstone that looked very much like a dried up basin or marsh, and that was exactly what Curiosity scientists determined it was, at a minimum.  It took many months for Curiosity leaders to ever use the word “lake” to describe what had once existed on the site, but now it is a consensus description.

Since the presence of a fossil lake was confirmed and announced, the water story has taken something of a backseat as the rover made its challenging and revelatory way across the lowlands of Gale Crater, through some dune fields and onto the Murray formation — a large geological unit that is connected to the base of Mount Sharp itself.  And all along the path of the rover’s traverse mudstone and sandstone were present, a clear indication of ever larger amounts of water.

I spoke recently with geologist and biogeologist John Grotzinger, the former NASA chief scientist for Curiosity and now a member of the science team, to get a sense of how things had progressed for the Gale water story.  He said there was no longer any doubt that the crater was once quite filled with water.

“We have  not seen a single rock at Gale that doesn’t say that the planet was wet.  In the areas where the rover has driven, I’d be very comfortable now in saying that the surface and ground water was often present for millions to tens of millions of years.”

Gale crater mudstone

Gale Crater mudstone at the Kimberly site.

Read more

« Older posts Newer posts »

© 2019 Many Worlds

Theme by Anders NorenUp ↑