Category: The Origin of Life (page 3 of 5)

A New and Revelatory Window Into Evolution on Earth

A Leanchoilia fossil from at the Qingjiang site in China. A very early arthropod  found with sharply defined appendages is an arthropod and  one of the prime examples of early Cambrian life (D Fu et al., Science 363:1338 (2019)

Virtually every definition of the word “life” includes the capability to undergo Darwinian evolution as a necessary characteristic.  This is true of life on Earth and of thinking about what would constitute life beyond Earth.  If it can’t change, the thinking goes, then it cannot be truly alive.

In addition, evolutionary selection and change occurs within the context of broad planetary systems — the chemical makeup of the atmosphere, the climactic conditions, the geochemistry and more.  If an environment is changing, then the lifeforms that can best adapt to the new conditions are the ones that will survive and prosper.

So evolution is very much part of the landscape that Many Worlds explores — the search for life beyond Earth and effort to understand how life emerged on Earth.  Evolution happens in the context of broad conditions on Earth (and perhaps elsewhere), and finding potential life elsewhere involves understanding the conditions on distant planets and determining if they are compatible with life.

This all came to mind as I read about the discovery of a remarkable collection of fossils alongside a river in China, fossils of soft-bodied creatures that lived a half billion years ago in the later phase of what is termed the the Cambrian explosion.  They are of being compared already with the iconic “Burgess Shale” fossil find in Canada of decades ago, and may well shed equally revelatory light on a crucial time in the evolution of life on Earth.

Artist rendering of Qingjiang life showing characteristics of different early Cambrian taxonomical groups.  More than 50 percent had never been identified before. (ZH Yao and DJ Fu)

The new discovery is reported in the journal Science in a paper authored by Dongjing Fu and a team largely from the Northwest University in Xi’an.  The paper reports on a zoo of Cambrian-era creatures, with more than half of them never identified before in the rock record.

The animals are soft-bodied — making it all the more remarkable that they were preserved — and some bear little resemblance to anything that followed.   Like the Burgess Shale fossils, the Qingjiang discovery is of an entire ecosystem that largely disappeared as more fit (and predatory) animals emerged.… Read more

Japan’s Hayabusa2 Asteroid Mission Reveals a Remarkable New World

The Hayabusa2 touchdown movie, taken on February 22, 2019 (JST) when Hayabusa2 first touched down on asteroid Ryugu to collect a sample from the surface. It was captured using the onboard small monitor camera (CAM-H). The video playback speed is five times faster than actual time (JAXA).

On March 5 the Japan Aerospace Exploration Agency (JAXA) released the extraordinary video shown above. The sequence of 233 images shows a spacecraft descending to collect material from the surface of an asteroid, before rising amidst fragments of ejected debris. It is an event that has never been captured on camera before.

The images were taken by a camera onboard the Hayabusa2 spacecraft, a mission to explore a C-type asteroid known as “Ryugu” and bring a sample back to Earth.

C-type asteroids are a class of space rock that is thought to contain carbonaceous material and undergone little evolution since the early days of the Solar System. These asteroids may have rained down on the early Earth and delivered our oceans and possibly our first organics. Examination of the structure of Ryugu and its composition compared to Earth will help us understand how planets can become habitable.

Asteroid Ryugu from an altitude of 6km
Asteroid Ryugu from an altitude of 6km. Image was captured with the Optical Navigation Camera – Telescopic (ONC-T) on July 20, 2018 at around 16:00 JST. (JAXA, University of Tokyo, Kochi University, Rikkyo University, Nagoya University, Chiba Institute of Technology, Meiji University, University of Aizu, AIST.)

Hayabusa2 arrived at asteroid Ryugu on June 27, 2018. The spacecraft spent the summer examining the asteroid with a suite of onboard instruments. Despite being a tiny world at only 1km across, Hayabusa2 spotted different seasons on Ryugu. Like the Earth, the asteroid’s rotation axis is inclined so that different levels of sunlight reach the northern and southern hemispheres.

It also rotated upside down, spinning in the opposite sense to the Earth and its own path around the Sun. This is likely indicative of a violent past, a view supported by the heavily bouldered and cratered surface. This rugged terrain presented the Hayabusa2 team with a problem: where could they land?

After a summer of observations, Hayabusa2 had been planning three different operations on the asteroid surface. The first was the deployment of two little rovers known as the MINERVA-II1. The second was the release of a shoebox-sized laboratory known as MASCOT, designed by the German and French space agencies.… Read more

All About Emergence

A swarm of birds act as an emergent whole as opposed to a collection of individual birds. The workings of swarms have been fruitfully studied by artificial life scientists, who look for abstracted insights into life via computers and other techniques. (Walerian Walawski)

 

If there was a simple meaning of the often-used scientific term “emergence,” then 100-plus scientists wouldn’t have spent four days presenting, debating and not infrequently disagreeing about what it was.

But as last month’s organizers of the Earth-Life Science Institute’s “Comparative Emergence” symposium in Tokyo frequently reminded the participants, those debates and disputes are perfectly fine and to be expected given the very long history and fungibility of the concept.

At the same time, ELSI leaders also clearly thought that the term can have resonance and importance in many domains of science, and that’s why they wanted practitioners to be exposed more deeply to its meanings and powers.

Emergence is a concept commonly used in origins of life research, in complexity and artificial life science; less commonly in chemistry, biology, social and planetary sciences; and — originally – in philosophy. And in the 21st century, it is making a significant comeback as a way to think about many phenomena and processes in the world.

So what is “emergence?” Most simply, it describes the ubiquitous and hugely varied mechanisms by which simple components in nature (or in the virtual or philosophical world) achieve more complexity, and in the process become greater than the sum of all those original parts.

The result is generally novel, often surprising, and sometimes most puzzling – especially since emergent phenomena involve self-organization by the more complex whole.

Think of a collection of ants or bees and how they join leaderless by the many thousands to make something – a beehive, an ant colony – that is entirely different from the individual creatures.

 

The Eagle nebula is an intense region of star formation, an emergent phenomenon
that clearly creates something novel out of simpler parts. (European Space Observatory.)

Think of the combination of hydrogen and oxygen gases which make liquid water. Think of the folding of proteins that makes genetic information transfer possible. Think of the processes by which bits of cosmic dust clump and clump and clump millions of times over and in time become a planetesimal or perhaps a planet. Think of how the firing of the billions of neurons in your brain results in consciousness.Read more

The Moon-Forming Impact And Its Gifts

 

Rice University petrologists have found Earth most likely received the bulk of its carbon, nitrogen and other life-essential volatile elements from the planetary collision that created the moon more than 4.4 billion years ago. (Rice University)

 

The question of how life-essential elements such as carbon, nitrogen and sulfur came to our planet has been long debated and is a clearly important and slippery scientific subject.

Did these volatile elements accrete onto the proto-Earth from the sun’s planetary disk as the planet was being formed?  Did they arrive substantially later via meteorite or comet?  Or was it the cataclysmic moon-forming impact of the proto-Earth and another Mars-sized planet that brought in those essential elements?

Piecing this story together is definitely challenging,  but now there is vigorous support for one hypothesis — that the giant impact brought us the elements would later be used to enable life.

Based on high pressure-temperature experiments, modeling and simulations, a team at Rice University’s Department of Earth, Environmental and Planetary Sciences makes that case in Science Advances for the central role of the proto-planet called Theia.

“From the study of primitive meteorites, scientists have long known that Earth and other rocky planets in the inner solar system are volatile-depleted,” said study co-author Rajdeep Dasgupta. “But the timing and mechanism of volatile delivery has been hotly debated. Ours is the first scenario that can explain the timing and delivery in a way that is consistent with all of the geochemical evidence.”

“What we are saying is that the impactor definitely brought the majority supply of life-essential elements that we see at the mantle and surface today,” Dasgupta wrote in an email.

 

A schematic depicting the formation of a Mars-sized planet (left) and its differentiation into a body with a metallic core and an overlying silicate reservoir. The sulfur-rich core expels carbon, producing silicate with a high carbon to nitrogen ratio. The moon-forming collision of such a planet with the growing Earth (right) can explain Earth’s abundance of both water and major life-essential elements like carbon, nitrogen and sulfur, as well as the geochemical similarity between Earth and the moon. (Rajdeep Dasgupta; background photo of the Milky Way galaxy is by Deepayan Mukhopadhyay)

 

Some of their conclusions are based on the finding of a similarity between the isotopic compositions of nitrogen and hydrogen in lunar glasses and in the bulk silicate portions of the Earth. Read more

Time-Traveling in the Australian Outback in Search of Early Earth

This story was written by Nicholas Siegler, Chief Technologist for NASA’s Exoplanet Exploration Program at the Jet Propulsion Laboratory with the help of doctoral student Markus Gogouvitis, at the University of New South Wales, Australia and Georg-August-University in Gottingen, Germany.

 

These living stromatolites at Shark Bay, Australia are descendants of similar microbial/sedimentary forms once common around the world.  They are among the oldest known repositories of life.  Most stromatolites died off long ago, but remain at Shark Bay because of the high salinity of the water. (Tourism, Western Australia)

 

This past July I joined a group of geologists, geochemists, microbiologists, and fellow astronomers on a tour of some of the best-preserved evidence for early life.

Entitled the Astrobiology Grand Tour, it was a trip led by Dr. Martin Van Kranendonk, a structural geologist from the University of New South Wales, who had spent more than 25 years surveying Australia’s Pilbara region. Along with his graduate students he had organized a ten-day excursion deep into the outback of Western Australia to visit some of astrobiology’s most renowned sites.

The trip would entail long, hot days of hiking through unmaintained trails on loose surface rocks covered by barb-like bushes called spinifex.  As I was to find out, nature was not going to give up its secrets easily.  And there were no special privileges allocated to astrophysicists from New Jersey.

 

The route of our journey back in time.  (Google Earth/Markus Gogouvitis /Martin Van Kranendonk)

The state of Western Australia, almost four times the size of the American state of Texas but with less than a tenth of the population (2.6 million), is the site of many of astrobiology’s most heralded sites. For more than three billion years, it has been one of the most stable geologic regions in the world.

It has been ideal for geological preservation due to its arid conditions, lack of tectonic movement, and remoteness. The rock records have in many places survived and are now able to tell their stories (to those who know how to listen).

 

The classic red rocks of the Pilbara in Western Australia, with the needle sharp spinifex bushes in the foreground. (Nick Siegler, NASA/JPL-Caltech)

Our trip began with what felt like a pilgrimage. We left Western Australia’s largest city Perth and headed north for Shark bsy. It felt a bit like a pilgrimage because the next morning we visited one of modern astrobiology’s highlights – the living stromatolites of Shark Bay.… Read more

Piecing Together The Narrative of Evolution

A reconstruction of the frond-like sea creature Stromatoveris psygmoglena, which lived during the Cambrian explosion of life forms on Earth.  Newfound fossils of Stromatoveris were compared with Ediacaran fossils, and researchers concluded they were all very early animals and that this animal group survived the mass extinction event that occurred between the Ediacaran and Cambrian periods. (Jennifer Hoyal Cuthill.)

An essential characteristic of life is that it evolves. Whether on Earth or potentially Mars, Europa or distant exoplanets, we can assume that whatever life might be present has the capacity and the need to change.

Evolution is intimately tied to the origin-of-life question, which this column often explores.  Having more answers regarding how life might have started on Earth can no doubt help the search for life elsewhere, just as finding life elsewhere could help understand how it started here.

The connection between evolution and exoplanets has an added and essential dimension when it comes to hunting for signatures of distant extraterrestrial life.

Searching for a planet with lots of oxygen and other atmospheric compound in disequilibrium (as on Earth) is certainly a way forward. But it is sobering to realize that those biosignatures would not have been detectable on Earth for most of the time that life has been present.  That’s because large concentrations of oxygen are a relative newcomer to our planet,  product of biological evolution.

With all this in mind, it seems both interesting and useful to look at the work of a researcher studying the fossil record to better understand a particular transition on Earth — the one from simpler organisms to multicellular creatures that can be considered animals.

The surprising, large transitional life of the Ediacaran period, which just preceded the Cambrian explosion of complex life. This grouping is termed the Ediacara assemblage, and existed late in the period.  (John Sibbick)

The researcher is Jennifer Hoyal Cuthill of the University of Cambridge, who I first met at the Earth-Life Science Institute in Tokyo, a unique place where scientists research the origin of Earth and of life on Earth.

She had been included in a group of twelve two-year fellows recruited from around the world who specialized in fields ranging from the microbiology of extreme environments to the current and past dynamics of the deep Earth and the digital world of chemo informatics.  And then there was Hoyal Cuthill, whose field is paleobiology, with a heavy emphasis on evolution.… Read more

Diamonds and Science: The Deep Earth, Deep Time, and Extraterrestrial Crystal Rain

Deep Earth diamond with garnet inside.  These inclusions, which occur during the diamond formation process, provide not only a way to date the diamonds, but also a window into conditions in deep Earth when they wee formed.  (M. Gress, VU Amsterdam)

We all know that cut diamonds sparkle and shine, one of the great aesthetic creations from nature.

Less well known is that diamonds and the bits of minerals, gases and water encased in them offer a unique opportunity to probe the deepest regions of our planet.

Thought to be some of the oldest available materials found on Earth — some dated at up to 3.5 billion years old — they crystallize at great depth and under great pressure.

But from the point of view of those who study them, it’s the inclusions that loom large because they allow scientists to know the age and depth of the diamond’s formation. And some think they can ultimately provide important clues to major scientific questions about the origin of water on Earth and even the origin of life.

The strange and remarkable subterranean world where the diamonds are formed has, of course, never been visited, but has been intensively studied using a variety of indirect measurements.  And this field has in recent weeks gotten some important discoveries based on those diamond inclusions.

First is the identification by Fabrizio Nestola of the Department of Geosciences at the University of Padua and colleagues of a mineral that has been theorized to be the fourth most  common on Earth, yet had never been found in nature or successfully synthesized in a laboratory.  As reported in the journal Nature, the mineral is a variant of calcium silicate (CaSiO3), created at a high pressure that gives it a uniquely deep-earth crystal structure called “perovskite,” which is the name of a mineral, too.

Mineral science does not allow a specimen to be named until it has actually been found in name, and now this very common form of mineral finally will get a name. But more important, it moves forward our understanding of what happens far below the Earth’s surface.

 

 

Where diamonds are formed and found on Earth. The super-deep are produced very far into the mantle and are pushed up by volcanoes and convection  The lithospheric diamonds are from the rigid upper mantle and crust and the alluvial diamonds are those which came to the surface and then were transported elsewhere by natural forces.

Read more

False Positives, False Negatives; The World of Distant Biosignatures Attracts and Confounds

This artist’s illustration shows two Earth-sized planets, TRAPPIST-1b and TRAPPIST-1c, passing in front of their parent red dwarf star, which is much smaller and cooler than our sun. NASA’s Hubble Space Telescope looked for signs of atmospheres around these planets. (NASA/ESA/STScI/J. de Wit, MIT)

What observations, or groups of observations, would tell exoplanet scientists that life might be present on a particular distant planet?

The most often discussed biosignature is oxygen, the product of life on Earth.  But while oxygen remains central to the search for biosignatures afar, there are some serious problems with relying on that molecule.

It can, for one, be produced without biology, although on Earth biology is the major source.  Conditions on other planets, however, might be different, producing lots of oxygen without life.

And then there’s the troubling reality that for most of the time there has been life on Earth, there would not have been enough oxygen produced to register as a biosignature.  So oxygen brings with it the danger of both a false positive and a false negative.

Wading through the long list of potential other biosignatures is rather like walking along a very wet path and having your boots regularly pulled off as they get captured by the mud.  Many possibilities can be put forward, but all seem to contain absolutely confounding problems.

With this reality in mind, a group of several dozen very interdisciplinary scientists came together more than a year ago in an effort to catalogue the many possible biosignatures that have been put forward and then to describe the pros and the cons of each.

“We believe this kind of effort is essential and needs to be done now,” said Edward Schwieterman, an astronomy and astrobiology researcher at the University of California, Riverside (UCR).

“Not because we have the technology now to identify these possible biosignatures light years away, but because the space and ground-based telescopes of the future need to be designed so they can identify them. ”

“It’s part of what may turn out to be a very long road to learning whether or not we are alone in the universe”.

 

Artistic representations of some of the exoplanets detected so far with the greatest potential to support liquid surface water, based on their size and orbit.  All of them are larger than Earth and their composition and habitability remains unclear. They are ranked here from closest to farthest from Earth. 

Read more

2.5 Billion Years of Earth History in 100 Square Feet

Scalding hot water from an underground thermal spring creates an iron-rich environment similar to what existed on Earth 2.5 billion years ago. (Nerissa Escanlar)

Along the edge of an inlet on a tiny Japanese island can be found– side by side – striking examples of conditions on Earth some 2.4 billion years ago, then 1.4 billion years ago and then the Philippine Sea of today.

First is a small channel with iron red, steaming and largely oxygen-free water – filled from below with bubbling liquid above 160 degrees F. This was Earth as it would have existed, in a general way, as oxygen was becoming more prevalent on our planet some 2.4 billion years ago. Microbes exist, but life is spare at best.

Right next to this ancient scene is region of green-red water filled with cyanobacteria – the single-cell creatures that helped bring masses of oxygen into our atmosphere and oceans.  Locals come to this natural “onsen” for traditional hot baths, but they have to make their way carefully because the rocky floor is slippery with green mats of the bacteria.

And then there is the Philippine Sea, cool but with spurts of warm water shooting up from below into the cove.

All of this within a area of maybe 100 square feet.

It is a unique hydrothermal scene, and one recently studied by two researchers from the Earth-Life Science Institute in Tokyo – evolutionary microbiologist Shawn McGlynn and ancient virus specialist Tomohiro Mochizuki.

They were taking measurements of temperature, salinity and more, as well as samples of the hot gas and of microbial life in the iron-red water. Cyanobacterial mats are collected in the greener water, along with other visible microbe worlds.

Shawn McGlynn, associate professor at the Earth Life Science Institute in Tokyo scoops some iron-rich water from a channel on Shikine-jima Island, 100 miles from Tokyo. (Nerissa Escanlar)

The scientific goals are to answer specific questions – are the bubbles the results of biology or of geochemical processes? What are the isotopic signatures of the gases? What microbes and viruses live in the super-hot sections? And can cyanobacteria and iron co-exist?

All are connected, though, within the broad scientific effort underway to ever more specifically understand conditions on Earth through the eons, and how those conditions can help answer fundamental questions of how life might have begun.

“We really don’t know what microbiology looked like 2.5 billion or 1.5 billion years ago,” said McGlynn, “But this is a place we can go where we can try to find out.… Read more

Could High-Energy Radiation Have Played an Important Role in Getting Earth Ready For Life?

A version of this article first appeared in Astrobiology Magazine, http://www.astrobio.net.

The fossil remains of a natural nuclear reactor in Oklo, Gabon.  It entered a fission state some 2 billion years ago, and so would not have been involved in any origin of life scenario.  But is a proof of concept that these natural reactors have existed and some were widespread on earth Earth.  It is but one possible source of high energy particles on early Earth. The yellow rock is uranium oxide. (Robert D. Loss, Curtin University, Australia)

Life on early Earth seems to have begun with a paradox: while life needs water as a solvent, the essential chemical backbones of early life-forming molecules fall apart in water. Our universal solvent, it turns out, can be extremely corrosive.

Some have pointed to this paradox as a sign that life, or the precursor of life, originated elsewhere and was delivered here via comets or meteorites. Others have looked for solvents that could have the necessary qualities of water without that bond-breaking corrosiveness.

In recent years the solvent often put forward as the eligible alternative to water is formamide, a clear and moderately irritating liquid consisting of hydrogen, carbon, nitrogen and oxygen. Unlike water, it does not break down the long-chain molecules needed to form the nucleic acids and proteins that make up life’s key initial instruction manual, RNA. Meanwhile it also converts via other useful reactions into key compounds needed to make nucleic acids in the first place.

Although formamide is common in star-forming regions of space, scientists have struggled to find pathways for it to be prevalent, or even locally concentrated, on early Earth. In fact, it is hardly present on Earth today except as a synthetic chemical for companies.

New research presented by Zachary Adam, an earth scientist at Harvard University, and Masashi Aono, a complex systems scientist at Earth-Life Science Institute (ELSI) at Tokyo Institute of Technology, has produced formamide by way of a surprising and reproducible pathway: bombardment with radioactive particles.

 

In a room fitted for cobalt-60 testing on the campus of the Tokyo Institute of Technology, a team of researchers gather around the (still covered) cobalt-60 and vials of the chemicals they were testing. The ELSI scientists are (from left) Masashi Aono,  James Cleaves, Zachary Adam and Riquin Yi.  (Isao Yoda)

The two and their colleagues exposed a mixture of two chemicals known to have existed on early Earth (hydrogen cyanide and aqueous acetonitrile) to the high-energy particles emitted from a cylinder of cobalt-60, an artificially produced radioactive isotope commonly used in cancer therapy.… Read more

« Older posts Newer posts »

© 2023 Many Worlds

Theme by Anders NorenUp ↑