Category: Astrobiology (page 1 of 13)

NASA’s Perseverance Rover Lands on Mars — The Third Martian Arrival in a Week

This true-color Mars globe includes Terra Meridiani, the region where NASA’s Opportunity rover explored from 2004 to 2018.  Two more Mars rovers — one from NASA and the other from China — are scheduled to land this week and then later in the year. (NASA/Greg Shirah)

Mars is receiving visitors these days.  Quite a few of them.

The most prominent visitor is NASA’s Perseverance rover,  which made a difficult but smooth precision landing at 3.55 ET  this afternoon.

The rover now sits in Jezero Crater, in an area that clearly once had lots of water flowing.   The site was selected, in part, because the Perseverance rover’s official mission includes — for the first time since the mid 1970s — an effort to find signs of long ago life.

Perseverance will join the Curiosity rover on Mars, that pioneering machine that has revolutionized our understanding of the planet since it landed in 2012  The Curiosity and Perseverance rovers are similar in design but carry different instruments with different goals.

A key difference:  Curiosity was tasked with determining whether Mars had once been habitable and found that it definitely had been, with flowing rivers, large lakes and necessary-for-life organic compounds.  Perseverance will take another scientific step forward and search for signs that Mars actually was once inhabited.

Perseverance also joins China’s Tianwen-1 (“heavenly questions”) probe,  which went into orbit around Mars last week.  It is the first Chinese spacecraft to arrive at Mars, and later this spring or summer the Chinese space agency will attempt to land a rover as well on the planet’s northern plains..

And then there’s the Hope spacecraft which entered into Mars orbit last week as well.  Launched by the United Arab Emirates, it was placed in a wide orbit so it could study the planet’s weather and climate systems, which means it also can see the full planet in one view.

These spacecraft will join several others on or orbiting Mars, making this by far the busiest time ever for exploration of Mars — a real milestone.

NASA’s Perseverance rover will land in Jezero Crater. This image was produced using instruments on NASA’s Mars Reconnaissance Orbiter, which helps identify potential landing sites for future missions. On ancient Mars, water carved channels and transported sediments to form fans and deltas within lake basins, as is clearly visible at here at Jezaro Crater (NASA/JPL-Caltech/ASU)

That the Perseverance mission has a formal goal of searching for ancient signs of life is a big deal, and involves a lot of history.… Read more

New Insights Into How Earth Got Its Nitrogen

An artist’s conception shows a protoplanetary disk of dust and gas around a young star. New research by Rice University shows that Earth’s nitrogen came from both inner and outer regions of the disk that formed our solar system, contrary to earlier theory.  (NASA/JPL-Caltech)

Scientists have long held that many of the important compounds and elements that make life possible on Earth arrived here after the planet was formed and was orbiting the sun.  These molecules came via meteorites and comets, it was thought,  from the colder regions beyond Jupiter.

But in a challenge to that long-accepted view, a team from Rice University has found isotopic signatures of nitrogen from both the inner and the outer disk in iron meteorites that fell to Earth.  What this strongly suggests is that the seeds of rocky, inner solar system planets such as Earth were bathed in  dust that contained nitrogen and other volatiles, and the growing planet kept some of that “local” material.

“Our work completely changes the current narrative,” said Rice University graduate student and lead author Damanveer Grewal. “We show that the volatile elements were present in the inner disk dust, probably in the form of refractory (non-gaseous) organics, from the very beginning. This means that contrary to current understanding, the seeds of the present-day rocky planets — including Earth — were not volatile-free.”

The solar protoplanetary disk was separated into two reservoirs, with the inner solar system material having a lower concentration of nitrogen-15 and the outer solar system material being nitrogen-15 rich. The nitrogen isotope composition of present-day Earth lies in between, according to a new Rice University study that shows it came from both reservoirs. (Credit: Illustration by Amrita P. Vyas)

This work helped settle a prolonged debate over the origin of life-essential volatile elements — such as hydrogen, water, carbon dioxide, methane, nitrogen, ammonia — on Earth and other rocky bodies in the solar system.

“Researchers have always thought that the inner part of the solar system, within Jupiter’s orbit, was too hot for nitrogen and other volatile elements to condense as solids, meaning that volatile elements in the inner disk were only in the gas phase,” Grewal said.

Because the seeds of present-day rocky planets, also known as protoplanets, grew in the inner disk by accreting locally sourced dust, he said it appeared they did not contain nitrogen or other volatiles because of the high temperatures, necessitating their delivery from the outer solar system.… Read more

More Weird and Wild Planets

A world called TOI-849b could be the exposed, naked core of a former gas giant planet whose atmosphere was blasted away by its star.  Every day is a bad day on planet TOI-849b. . It hugs its star so tightly that a year – one trip around the star – takes less than a day. And it pays a high price for this close embrace: an estimated surface temperature of nearly 2,800 degrees Fahrenheit (1,500 degrees Celsius) It’s a scorcher even compared to Venus, which is 880 degrees Fahrenheit (471 degrees Celsius). About half the mass of our own Saturn, this planet orbits a Sun-like star more than 700 light-years from Earth. (NASA/Exoplanet Exploration Program)

The more we learn about the billions upon billions of planets that orbit beyond our solar system, the more we are surprised by the wild menagerie of objects out there.  From the start, many of these untolled planets have been startling, paradigm-breaking,  mysterious, hellish, potentially habitable and just plain weird.  Despite the confirmed detection of more than 4,000 exoplanets, the job of finding and characterizing these worlds remains in its early phases.  You could make the argument that  learning a lot more about these distant exoplanets and their solar systems is not just one of the great tasks of future astronomy, but of future science.

And that is why Many Worlds is returning to the subject of “Weird Planets,” which first appeared in this column at the opening of 2019.  It has been the most viewed column in our archive, and a day seldom goes by without someone — or some many people — decide to read it.

So here is not a really a sequel, but rather a continuation of writing about this unendingly rich subject.  And as I will describe further on,  almost all of the planets on display so far have been detected and characterized without ever having been seen.  The characteristics and colors presented in these (mostly) artistic renderings are the result of indirect observing and discovery — measuring how much light dims when a faraway planet crosses its host star, or how much the planet’s gravity causes its sun to move.

As a result, these planets are sometimes called “small, black shadows.” Scientists can infer a lot from the indirect measurements they make and from the beginnings of the grand effort to spectroscopically read the chemical makeup of exoplanet atmospheres. … Read more

Japan’s Hayabusa2 Mission Returns to Earth

Fireball created by the Hayabusa2 re-entry capsule as it passes through the Earth’s atmosphere towards the ground (JAXA).

In the mission control room in Japan, all eyes were fixed on one of the large screens that ran along the far wall. The display showed the night sky, with stars twinkling in the blackness. We were waiting for a delivery from space.

Japan’s Hayabusa2 mission launched from the Tanegashima Space Center on December 3, 2014. The spacecraft was headed to asteroid Ryugu, with the intention of studying the tiny world and collecting a sample to return to Earth.

The mission would prove to be an incredible success. Not only did the spacecraft gather two samples from the asteroid, but it was the first mission to deploy autonomous rovers to explore an asteroid’s surface, generate an artificial crater in order to study the asteroid’s structure and collect a sample of the interior, and additionally, deploy a lander to make scientific measurements from the surface itself. The mission finale was to return the samples safely back to Earth on December 6, 2020. The grains in that sample container may hold clues as to how the Earth became habitable.

Ryugu is an example of a C-type or “carbonaceous” asteroid. These asteroids have undergone relatively little change since the start of the solar system, and are thought to contain hydrated minerals (minerals containing water in their structure) and possible organics. It is this class of asteroid that may have crashed into the early Earth and delivered the necessary tools for life to begin. Analysis of the Ryugu sample could therefore tell us about our own beginnings and how terrestrial planets develop habitable conditions.

Images before and after the first touchdown of Hayabusa2 on asteroid Ryugu, taken with CAM-H on February 21, 2019 (animation plays at 5x speed) (JAXA).

As the Hayabusa2 spacecraft drew near the Earth, five “trajectory control manoeuvres” (TCMs) were planned. The first four of these were designed to put the spacecraft onto a collision course with the Earth, aimed at the Woomera desert in Australia. The re-entry capsule would then be released, and the spacecraft would make a final manoeuvre to divert onto an orbit that swept past the Earth and back into deep space.

Despite the smooth progress so far, there were concerns. The capsule release mechanism had not been tested since launch six years previously and it was always possible that separation would fail.… Read more

The Faint Young Sun Paradox and Mars

This NASA image of Mars at sunset taken by the Spirit  rover, evokes the conditions on early Mars when the planet received only 70 percent of the of the solar energy that it does now.  (NASA/JPL/Texas A&M/Cornell)

When our sun was young, it was significantly less luminous and sent out significantly less warming energy than it does now.  Scientists estimate that 4 million years ago, when the sun and our solar system were 500 million years old, the energy that the sun produced and dispersed was about 75 percent of what it is today.

The paradox arises because during this time of the faint young sun Earth had liquid water on its surface and — as has been conclusively proven in recent years — so did Mars, which is 61 million miles further into space.  However difficult it is to explain the faint young sun problem as it relates to early Earth, it is far more difficult to explain for far more frigid Mars.

Yet many have tried.  And because the data is both limited and innately puzzling, the subject has been vigorously debated from a variety of different perspectives.  In 2018, the journal Nature Geoscience published an editorial on the state of that dispute titled “Mars at War.”

There are numerous point of (strenuous) disagreement, with the main ones involving whether early Mars was significantly more wet and warm than previously inferred, or whether it was essentially cold and arid with only brief interludes of warming.  The differences in interpretation also require different models for how the warming occurred.

Was there a greenhouse warming  effect produced by heat-retaining molecules in the atmosphere?  Was long-term volcanic activity the cause? Or perhaps meteor strikes?  Or heat from the interior of the planet?

All of these explanations are plausible and all may have played a role.  But that begs the question that has so energized Mars scientists since Mars orbiters and the Curiosity rover conclusively proved that surface water created early rivers and valley networks, lakes and perhaps an ocean.  To solve the “faint young sun” paradox as it played out on Mars,  a climate driver (or drivers) that produces significant amounts of heat is required.

Could the necessary warming be the result of radioactive elements in the Martian crust and mantle that decay and give off impressive amounts of heat when they do?

A team led by Lujendra Ojha, an assistant professor at Rutgers University, proposes in Science Advances that may well be the answer, or at least part of the answer.… Read more

How Radioactive Elements May Make Planets Suitable or Hostile to Life

An artist’s conception of a super Venus planet on the left and a super Earth on the right.  The question of what makes one planet habitable and one uninhabitable is a focus of many astrobiology researchers.  A new hypothesis looks at the presence of radioactive elements as an important factor in making a solar system habitable. (NASA/JPL-Caltech/Ames)

When describing exoplanets that are potentially promising candidates for life, scientists often use the terminology of the “habitable zone.”  This is a description of planets in orbit where temperatures, as predicted by the distance from the host star,  are not too cold for liquid water to exist on a planetary surface and also not to hot for all the water to burn off.

This planetary sweet spot, which not surprisingly Earth inhabits, is also more casually called the “Goldilocks zone” for exoplanets.

While there is certainly value to the habitable zone concept, there has also been scientific pushback to using the potential presence of liquid water as a primary or singular factor in predicting potential habitability.

There are just too many other factors that can play into habitability, some argue, and a focus on a planet’s distance from its host sun (and thus its temperature regime) is too narrow.  After all, several of the objects that just might support life in our own solar system are icy moons quite far from any solar system habitable zone.

With these concerns in the background, an interdisciplinary team of astrophysicists and planetary scientists at the University of California, Santa Cruz has begun to look at a source of heat in addition to suns and tidal forces that might play a role in making a planet habitable.

This source is the heat generated by the decay of long-lived radioactive elements such as uranium, thorium and potassium, which are found in stars and presumably on and in planets throughout the galaxies in greater or lesser amounts.

Using theory and modeling, they have concluded that the abundance of these radioactive elements in a planetary mantle can indeed give important insights into whether life might emerge there.

Supercomputer models of Earth’s magnetic field,  which is kept going thanks in part to the heat and subsequent convection produced by radioactive decay. (NASA)

Uranium is among the most widespread  elements on Earth — 500 times more common than gold It is present on the surface and in the mantle below. (Atomic Heritage Foundation.)

Read more

Strong Doubts Arise About the Reported Phosphine Biosignature in the Atmosphere of Venus

An artist’s depiction of Venus and, in the inset, phosphine molecules.
(© ESO/M. Kornmesser/L. Calçada & NASA/JPL-Caltech,)

What started as a stunning announcement that the chemical phosphine — a known byproduct of life — had been found in the clouds of Venus and could signal the presence of some lifeform has now been strongly critiqued by a number of groups of scientists.   As a result, there is growing doubt that the finding, published in the journal Nature Astronomy in September,  is accurate.

The latest critique, also submitted to Nature Astronomy but available in brief before publication, is led by NASA’s planetary scientist Geronimo Villaneuva and others at the Goddard Space Flight Center. They reanalyzed the data used to reach the conclusion that phosphine was present and concluded that the signal was misinterpreted as phosphine and most likely came instead from sulphur dioxide, which Venus’s atmosphere is known to contain in large amounts.

The title of their paper is “No phosphine in the atmosphere of Venus.”

Another paper led by Ignas Snellen from the Leiden Observatory came to a similar conclusion, but finding fault elsewhere. She and her team analyzed the data used in the initial research to see if cleaning up the noise with a 12-variable mathematic formula, as was used in the paper, could lead to incorrect results.

According to Snellan, using this formula actually gave the original team —  false results and they found “no statistical evidence for phosphine in the atmosphere of Venus.”

While this critical research does not on its own disprove that phosphine exists in Venus’ atmosphere, it clearly raises doubts about original team’s conclusions.

That original team was lead by Jane S. Greaves, a visiting scientist at the University of Cambridge when when she worked on the phosphine finding.  She herself has also has been unable to replicate the level of phosphine found by her team, and was a co-author on a paper that described that.   It is now almost impossible to collect new data because of the coronavirus pandemic.

 

Venus is roughly the size of Earth but much hotter due to its huge concentrations of carbon dioxide in the atmosphere.  (NASA)

This intense scrutiny continues as staff at the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, discovered a separate, unspecified issue in the data that were used to detect the phosphine. “There are some issues with interpretation that we are looking at,” says Dave Clements, an astrophysicist at Imperial College London and co-author of the original study.… Read more

Surprising Insights Into the Asteroid Bennu’s Past, as OSIRIS-REx Prepares For a Sample-Collecting “Tag”

Artist rendering of the OSIRIS-REx spacecraft as it will approach the asteroid Bennu to collect a sample of ancient, pristine solar system material. The  pick-up”tag” is scheduled for Oct. 20. (NASA Goddard Space Flight Center, University of Arizona)

Long before there was an Earth, asteroids large and small were orbiting our young sun.  Among them was one far enough out from the sun to contain water ice, as well as organic compounds with lots of carbon.  In its five billion years or so as an object,  the asteroid was hit and broken apart by other larger asteroids, probably grew some more as smaller asteroids hit it,  and then was smashed to bits again many millions of years ago.  Some of it might have even landed on Earth.

The product of this tumultuous early history is the asteroid now called Bennu, and the destination for NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer) mission.  On October 20, the spacecraft will make its dramatic final descent, will touch the ground long enough to collect some samples of the surface, and then will in the months ahead return home with its prized catch.

The sample will consist of grains of a surface that have experienced none of the ever-active geology on Earth,  no modifications caused by life,  and little of the erosion and weathering.  In other words, it will be a sample of the very early solar system from which our planet arose.

“This will be our first chance to look at an ancient, carbon-rich environment – the most pristine example of the chemistry of the very early solar system,” said Daniel Glavin, an astrobiologist at NASA’s Space Flight Center and a co-investigator of the OSIRIS-REx team.  “Anything as ancient on early Earth would have been modified many times over.”

“But at Bennu we’ll see the solar system, and the Earth,  as it was chemically before all those changes took place.  This will be the kind of pristine pre-biotic chemistry that life emerged from.”

This image of Bennu was taken by the OSIRIS-REx spacecraft from a distance of around 50 miles (80 km).
(NASA/Goddard/University of Arizona)

Bennu is an unusual asteroid.  It orbits relatively close to Earth — rather than in the main asteroid belt between Mars and Jupiter — and that’s one of several main reasons why it was selected for a visit.  It is also an asteroid with significant amounts of primeval carbon and organics, which is gold for scientists eager to understand the early solar system, planet formation and the origin of life on Earth.… Read more

Why Not Assemble Space Telescopes In Space?

Artist rendering of an in-space assembled observatory concept with a 20-meter diameter primary mirror. (NASA’s  In Space Assembled Telescope Study, iSAT)

As we grow more ambitious in our desires to see further and more precisely in space, the need for larger and larger telescope mirrors becomes inevitable.  Only with collection of significantly more photons by a super large mirror can the the quality of the “seeing” significantly improve.

The largest mirror in space now is the Hubble Space Telescope at 2.4 meters (7.9 feet) and that will be overtaken by the long-delayed James Webb Space Telescope (JWST) at 6.5 meters (21.3 feet) when it launches (now scheduled for late 2021.)  But already astronomers and space scientists are pressing for larger mirrors to accomplish what the space telescopes of today cannot do.

This is evident in the National Academies of Sciences Decadal Survey underway which features four candidate Flagship-class observatories for the 2030s.    Three proposals call for telescope mirrors that are significantly larger than the Hubble’s, and the most ambitious by far is LUVOIR  which has been proposed at 15.1 meters (or 50 feet) or at 8 meters (about 30 feet), or maybe something in between.  A primary goal of LUVOIR, and the reason for the large size of its mirrors, is that it will be looking for signs of biology on distant exoplanets — an extremely ambitious and challenging goal.

The LUVOIR team would have argued for an even larger telescope mirror except that 15.1 meters is the maximum folded size that would fit into the storage space available on the super heavy lift rockets expected to be ready by the 2030s.

This desire for larger and larger space telescopes has rekindled dormant but long-present interest in having an alternative to sending multi-billion dollar payloads into space via one launch only.  The alternative is “in-space assembly,” and NASA has shown increased interest in pushing the idea and technology forward.

Nick Siegler, Chief Technologist of NASA’s Exoplanet Exploration Program at the Jet Propulsion Lab, and others proposed a study of robotic in-space assembly in 2018.  The idea was accepted by the NASA Director for Astrophysics Paul Hertz and Siegler said the results are promising.

The International Space Station’s robotic Canadarm2 and Dextre carry an instrument assembly after removing it from the trunk of the SpaceX Dragon cargo ship (upper right), which is docked at the Harmony node of the ISS. (NASA

“For space telescopes larger than LUVOIR, in-space assembly will probably be a necessity because it’s unlikely that heavy-lift rockets will be getting any bigger than what’s being built now,” Siegler said. … Read more

Could Life Exist in the Clouds of Venus?

Nightside of Venus captured with the IR2 (infrared) camera on JAXA’s Akatsuki climate orbiter (JAXA).

On September 14 at 3pm GMT, an embargo lifted on a research paper reporting evidence for biological activity on Venus. Speculation about the discovery had been spreading rapidly through social media for several days, proving that scientists are incapable of keeping secrets.

With a surface temperature sufficient to melt lead, Venus is not the usual candidate for extraterrestrial life. However, the reported signature resides not on the surface of the planet, but in its clouds.

Led by Professor Jane Greaves at Cardiff University, the research team report an observation of phosphine; a molecule consisting of one atom of phosphorous and three atoms of hydrogen (PH3). On Earth, the trace amounts of phosphine in the atmosphere all come from either human or microbial activity. But does that make the presence of phosphine irrefutable evidence of life on Venus?

The case for phosphine as a biosignature

Phosphine has been found in the atmospheres of the gas giant planets, Jupiter and Saturn. However, this phosphine forms at the high temperatures and pressures existing deep within the giants’ colossal hydrogen-rich atmospheres. This process is not possible on the terrestrial planets, where the atmospheres are vastly thinner and hydrogen poor.

Instead of hydrogen, Venus’s atmosphere consists predominantly of carbon dioxide with clouds of sulfuric acid. While both ingredients sound abysmal for the prospect of life, the molecules consist of carbon and sulfur bounded to oxygen atoms. The prevalence of oxygen atoms should have resulted in any phosphorous present in the atmosphere to chemically react in a similar fashion to form a phosphate molecule (phosphorous and oxygen), rather than the observed phosphine (phosphorus and hydrogen).

Surface photographs from the former Soviet Union’s Venera 13 spacecraft, which touched down in March 1982. Temperatures on the surface are sufficient to melt lead, while the sulfur in the clouds gives the air its yellow/orange colour (NASA).

Despite considering thousands of possible reactions that might occur within Venus’s atmosphere, Greaves and her team failed to simulate the production of phosphine on Venus through abiotic (non-biological) means. Energetic processes such as lightening, volcanic activity or delivery via meteorites were also ruled out as possible sources, as the quantities they produced should be too low to explain the detection.

Estimates for the lifetime of phosphine also remove the chance that the molecules are leftover from an earlier epoch when the young Venus hosted a more clement environment.… Read more

« Older posts

© 2021 Many Worlds

Theme by Anders NorenUp ↑